

JBoss in Action

JBoss in Action
CONFIGURING THE JBOSS APPLICATION SERVER

JAVID JAMAE
PETER JOHNSON

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Development Editor Nermina Miller
Manning Publications Co. Copyeditor: Andrea Kaucher
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 978-1-933988-02-3
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09

www.manning.com

brief contents
PART 1 THE JBOSS APPLICATION SERVER...1

1 ■ Vote for JBoss 3

2 ■ Managing the JBoss Application Server 28

3 ■ Deploying applications 47

4 ■ Securing applications 73

PART 2 APPLICATION SERVICES .. 107

5 ■ Configuring JBoss Web Server 109

6 ■ Securing web applications 135

7 ■ Configuring enterprise applications 161

8 ■ JBoss Messaging 201

9 ■ Configuring Web Services 235

PART 3 JBOSS PORTAL... 261

10 ■ The JBoss Portal and portlets 263

11 ■ Configuring the JBoss Portal 289
v

BRIEF CONTENTSvi
PART 4 GOING TO PRODUCTION .. 319

12 ■ Understanding clustering 321

13 ■ Clustering JBoss AS services 353

14 ■ Tuning the JBoss Application Server 374

15 ■ Going to production 408

contents
preface xvii
acknowledgments xx
about this book xxii
about the cover illustration xxix

PART 1 THE JBOSS APPLICATION SERVER 1

1 Vote for JBoss 3
1.1 Introducing JBoss 4

What is JBoss? 4 ■ Exploring the JEMS lineup 6 ■ Why is JBoss AS
so popular? 7

1.2 Installing JBoss Application Server 9
Preparing for the installation 10 ■ Installing from the binary
distribution 11 ■ Using the JEMS Installer 11

1.3 Exploring the installation 13
The bin directory 13 ■ The client directory 14 ■ The docs directory 15
The lib directory 15 ■ The server directory 15 ■ Understanding server
configurations 16 ■ Exploring the configuration structure 17
Customizing your configuration 19
vii

CONTENTSviii
1.4 Starting and stopping the server 20
Starting the server 20 ■ Starting an alternative configuration 21
Verifying that the server is running 22 ■ Stopping the server 23

1.5 Deploying to the server 23
Creating the application 24 ■ Deploying the application 25
Undeploying the application 26

1.6 Summary 27
1.7 References 27

2 Managing the JBoss Application Server 28
2.1 Examining the JBoss Application Server architecture 29

Understanding the microcontainer 29 ■ Understanding JMX 31

2.2 Configuring the application server 33
Configuring logging 34 ■ Configuring directory locations 37
Defining system properties 39

2.3 Exploring the management tools 40
Using the JMX Console 40 ■ Using the twiddle utility 42

2.4 Examining interesting MBeans 43
Viewing system properties 44 ■ Viewing the JNDI namespaces 44
Changing the logging levels 45 ■ Increasing the thread pool size 46
Obtaining application server information 46

2.5 Summary 46
2.6 References 46

3 Deploying applications 47
3.1 Understanding deployment 48

Deploying an application 48 ■ Understanding application packaging 49
Understanding application types 50 ■ Understanding deployment order-
ing 52 ■ Deployment configuration options 52

3.2 Understanding class loading 55
Understanding multiple class loaders 55 ■ Scoping classes 56
Understanding loader repositories 57

3.3 Fixing common deployment errors 58
Class not found exception 58 ■ Duplicate JAR files 59 ■ Zip file
errors 60 ■ Class cast exception 60

3.4 Deploying miscellaneous applications 61
Deploying data sources 61 ■ Deploying a Hibernate archive 67

CONTENTS ix
3.5 Summary 72
3.6 References 72

4 Securing applications 73
4.1 Understanding security 74

Understanding application security 75 ■ Understanding authentica-
tion 76 ■ Understanding authorization 77 ■ Configuring security 78
Dynamic login configuration 80 ■ Logging security on the server 81

4.2 Using secure communication 82
Understanding symmetric and asymmetric encryption 82
Understanding certificates and source authentication 84
Creating and signing certificates 85 ■ Modifying the cacerts file 87
Understanding certificate-based client authentication 87
Configuring an SSL-aware security domain 90

4.3 Configuring login modules 91
Using the file-based login module 92 ■ Using the database login
module 94 ■ Using the LDAP login module 95 ■ Using the identity
login module 102 ■ Stacking login modules 102 ■ Using the client
certificate login module 104

4.4 Summary 105
4.5 References 105

PART 2 APPLICATION SERVICES 107

5 Configuring JBoss Web Server 109
5.1 Understanding web applications 110

Understanding the web application structure 110 ■ Understanding
web application configuration 111

5.2 Configuring JBoss Web Server 115
Locating key directories 115 ■ Exploring JBoss Web Server Configura-
tion 116 ■ Exploring the WAR deployer configuration file 119

5.3 Configuring URL paths 120
Enabling virtual hosts 121 ■ Configuring context paths 123
Changing the root context path 125

5.4 Configuring connectors 126
Understanding connector configuration 128 ■ Configuring
concurrency 129 ■ Configuring timeouts 129 ■ Configuring a
proxy hostname and port 129

CONTENTSx
5.5 Configuring web class loading 129
5.6 Using valves 130
5.7 Configuring JavaServer Faces 132
5.8 Summary 133
5.9 References 134

6 Securing web applications 135
6.1 Configuring web security 136

Configuring security in web.xml 137 ■ Configuring security in jboss-
web.xml 139 ■ Configuring security in server.xml 139

6.2 Authenticating users 140
Understanding the web authentication strategies 141 ■ Basic
authentication 142 ■ Form-based authentication 144 ■ Digest
authentication 145

6.3 Authorizing users 146
Configuring authorization 146 ■ Allowing access to any
authenticated user 147

6.4 Encrypting web communication 148
Enabling HTTPS 148 ■ Enabling transport guarantees 150
Enabling mutual authentication 152 ■ Creating browser
certificates 153

6.5 Enabling client-certificate authentication 154
Enabling protocol-level mutual authentication 155 ■ Setting the
authentication method 155 ■ Specifying the JaasSecurityDomain
MBean 155 ■ Specifying the security domain 156 ■ Pointing to the
security domain from the application 156 ■ Selecting a strategy for
forming the principal from the certificate 157 ■ Adding principals
and roles to the authorization datastore 157 ■ Adding the client’s
certificate to the server’s truststore 158 ■ Creating a browser
certificate 158

6.6 Changing the default security domain 159
6.7 Summary 159
6.8 References 160

7 Configuring enterprise applications 161
7.1 Understanding EJBs 162

Understanding session beans 164 ■ Understanding Hibernate and
JPA 165 ■ Understanding enterprise packaging 166

CONTENTS xi
7.2 Creating an EJB application 167
Coding the example application 168 ■ Packaging and running the
example application 171

7.3 Understanding EJB configuration 172
Where does everything go? 172 ■ Configuring EJB applications 173
Configuring the EJB server 176

7.4 Configuring session beans 177
Changing the JNDI binding 177 ■ Looking up a session bean 179
Configuring EJB containers 179

7.5 Configuring entity persistence 182
Injecting Hibernate objects 182 ■ Deploying Hibernate mappings 183

7.6 Creating JMX service objects 184
Creating a service object 184 ■ Running the sample application 186
Accessing MBeans without injection 187

7.7 Configuring the transport protocol 188
Understanding transport configuration 188 ■ Changing the
transport 190

7.8 Securing EJBs 191
Securing EJBs via annotations 192 ■ Securing EJBs via configuration 194
Nonintegrated security 195 ■ Securing EJB communication 197

7.9 Summary 199
7.10 References 200

8 JBoss Messaging 201
8.1 Understanding messaging systems 202

Understanding messaging system architectures 202 ■ Understanding the
messaging models 203 ■ Understanding the JMS API 204
Understanding the JBoss Messaging architecture 206

8.2 Developing a JMS application 207
Coding the example application 207 ■ Packaging and running the
example application 213

8.3 Using message-driven beans 214
Creating an MDB 215 ■ Packaging an MDB 217 ■ Using a
descriptor file with an MDB 218

8.4 Using message-driven POJOs 219
Implementing a message-driven POJO consumer 219
Implementing a message-driven POJO producer 221 ■ Packaging a
message-driven POJO 222

CONTENTSxii
8.5 Configuring JBoss Messaging 222
Configuring a data source 223 ■ Configuring access control 224
Configuring destinations 227 ■ Updating the application 228
Running the modified example 229 ■ Updating the MDB 230
Configuring secure message transport 230

8.6 Summary 233
8.7 References 234

9 Configuring Web Services 235
9.1 Understanding Web Services 236

Understanding web service terminology 237 ■ Understanding SOAP
binding styles 237

9.2 Developing a web service 238
Coding the web service 238 ■ Packaging the web service 239
Manually generating the WSDL 240 ■ Developing a web service
using the top-down strategy 241 ■ Developing the client 242
Developing a C# client 244 ■ Revisiting the SOAP binding styles 245

9.3 Exploring JBossWS annotations 246
Understanding the WebContext annotation 246 ■ Understanding
the EndpointConfig annotation 248

9.4 Securing a web service 249
Authorizing web service access 249 ■ Defining the security realm 250

9.5 Encrypting SOAP messages 252
Generating the certificate 253 ■ Securing the server using
WS-Security 254 ■ Securing the client using WS-Security 256
Signing the messages using WS-Security 258

9.6 Summary 260
9.7 References 260

PART 3 JBOSS PORTAL ... 261

10 The JBoss Portal and portlets 263
10.1 Introducing the JBoss Portal 264

Understanding JSR-168 265 ■ Understanding portal terminology 265
Installing the JBoss Portal 266 ■ Administering the JBoss Portal 268

10.2 Creating a portlet 270
Coding the Image portlet 270 ■ Coding the JSP-related source files 275
Understanding the portlet descriptors 279 ■ Building and deploying the
portlet 282

CONTENTS xiii
10.3 Creating a portlet instance 283
Creating an instance using the portlet-instance.xml file 283
Creating an instance using the Admin portlet 284

10.4 Declaring a portlet window 284
Declaring a portlet window using the *-object.xml file 284
Declaring a portlet window using the Admin portlet 285

10.5 Summary 288
10.6 References 288

11 Configuring the JBoss Portal 289
11.1 Configuring window appearance 290

Configuring window appearance using *-object.xml 291

11.2 Working with multiple windows and instances 292
Configuring multiple instances and windows using the descriptor
files 293

11.3 Working with the CMS portlet 295
Gathering example CMS data 296 ■ Displaying the new content 297
Accessing CMS content 298

11.4 Securing the Portal 299
Creating a new account 299 ■ Managing roles 300
Understanding access control 301

11.5 Developing a custom portal 308
Defining the requirements 308 ■ Making the proposal 308
Defining the portal 309 ■ Customizing the theme 312
Customizing CMS content 315 ■ Packaging the portal 316

11.6 Summary 318

PART 4 GOING TO PRODUCTION................................... 319

12 Understanding clustering 321
12.1 Understanding clustering 322

Load balancing 322 ■ Cluster topology and makeup 325
Automatic discovery and multicasting 327 ■ High availability 328
Replication and fault tolerance 329 ■ State passivation 332
Distribution versus clustering 333

12.2 Setting up a simple cluster 334
Bringing up a JBoss cluster 334 ■ Creating a clustered EJB 336
Deploying your application 337 ■ Calling the clustered EJB 337

CONTENTSxiv
12.3 Understanding JBoss clustering 338
Understanding the JGroups architecture 339 ■ Configuring JBoss
clustering services 340 ■ Configuring the protocol stack 343

12.4 Configuring JBoss Cache 346
Examining the JBoss Cache configuration files 347 ■ Deciding what
to cache 350

12.5 Summary 351
12.6 References 352

13 Clustering JBoss AS services 353
13.1 HTTP load balancing 354

Load balancing with native web servers 355 ■ Load balancing with
hardware 356

13.2 HTTP session replication 356
Configuring replication 356 ■ Understanding session usage 357
Using field-level replication 359 ■ Configuring passivation 360

13.3 Clustering session beans 361
Load balancing session beans 362 ■ Replicating stateful session
beans 363

13.4 Clustering entities 364
Replicating the entity cache 364

13.5 Clustering JNDI 367
Understanding the HA-JNDI service 367 ■ Enabling HA-JNDI 369
Accessing HA-JNDI 370 ■ Deciding whether to use HA-JNDI 371

13.6 Summary 372
13.7 References 373

14 Tuning the JBoss Application Server 374
14.1 Defining performance 375
14.2 Performance tuning methodology 376

Holistic performance tuning 376 ■ Performance analysis test cycle 377

14.3 Tuning the hardware and network 379
Setting network card speed 380 ■ Choosing the number of CPUs 381
Choosing 32-bit or 64-bit 381

14.4 Tuning the OS 382
Understanding processor affinity 382

CONTENTS xv
14.5 Tuning the JVM 384
Understanding the Java heap 385 ■ Understanding garbage
collection 387 ■ Gathering garbage collection data 389
Choosing heap settings 396 ■ Resolving out of memory
exceptions 397 ■ Exploring more tuning options 397

14.6 Tuning JBoss AS 398
Configuring data sources 398 ■ Configuring the HTTP request
thread pool 400 ■ Tuning the JSP servlet 401

14.7 Tuning your application 402
Avoiding System.gc 403 ■ Taking a thread dump 403

14.8 Summary 406
14.9 References 407

15 Going to production 408
15.1 Selecting a platform 409

Selecting a JVM 409 ■ Selecting a JBoss AS version 410 ■ Selecting
a platform 413

15.2 Collocating multiple application server instances 414
Preventing file clashes 414 ■ Preventing port clashes 415
Shutting down multiple nodes 422

15.3 Removing unwanted services 422
15.4 Securing the server applications 423

Removing the server applications 424 ■ Adding security to the server
applications 424 ■ Limiting access to the local machine 424

15.5 Changing the default database 425
Configuring the EJB3 timer service 426

15.6 Starting the application server as a service 427
Registering a service in Windows 428 ■ Registering multiple
services 429 ■ Registering a service in Linux 432

15.7 Configuring JSP compilation 434
15.8 Summary 435
15.9 Resources 436

appendix A JNDI namespaces 437
appendix B Change is inevitable 442

index 453

preface
As a consultant, I worked at many different software shops, and grew tired of seeing
people reimplement the same code over and over again. I knew there had to be a
faster and better way to write business applications than reimplementing security
frameworks and remoting frameworks for every project. Code reuse was the whole
appeal of OO programming, right?

 I started working with WebSphere in 2001—which led me to learn more about the
J2EE specification. I was fascinated by the idea that my knowledge of the standard was
portable; I could go to different companies that used J2EE application servers, and
focus on learning and programming business code rather than tinkering with medio-
cre, homemade frameworks that would occupy my time and give me little portable
knowledge, which is of paramount importance as a consultant.

 I wanted to experiment with WebSphere at home but found the lack of project and
code transparency frustrating. I came across JBoss and spent many hours experiment-
ing and learning about EJBs, JNDI, security, and class loading. Although I’d used open
source frameworks, I had never taken advantage of pouring through the forums and
code to learn and discuss the framework. I had taken advantage of the free price of
open source, but not the freedom to distribute, examine, improve, and modify the
code. I finally started understanding the benefits of this model.

 I started working with JBoss on a few projects in 2002 and wrote a couple JBoss-
related articles in 2004. Then, toward the end of 2005, two interesting things hap-
pened at around the same time. First, the consulting and training company that I was
working for became a JBoss Partner (before the Red Hat acquisition) and asked me to
xvii

PREFACExviii
take ownership of the partnership and to start teaching JBoss courses. Second, I got a
call from an Acquisitions Editor (the person who finds writers for the publisher) at
Manning asking if I had any leads on somebody who would be interested in writing a
book. She had run across my JBoss articles and thought I might be a good person to
ask. I thought that writing a book would be as easy as writing a series of technical
articles, so I offered to write the book myself. And after a little bit of convincing, I got
the job.

 At that point, I had to decide what the book would cover and who it would target.
Although I appreciated that the JBoss AS code and documentation was open, having
read through much of the JBoss AS documentation and books, I just wasn’t satisfied
with the style, quality, and expected audience of the material. Most of the documenta-
tion seemed overly esoteric and (in my opinion) geared more toward developers of
the application server itself, not necessarily toward the users. But I also didn’t want to
write another book on how to develop Java EE applications. Plenty of books and arti-
cles had already done that in an application server–agnostic fashion. I saw little bene-
fit in writing another book on the specification with some bits and pieces of JBoss AS
mixed in. I decided that the book should be geared toward developers and adminis-
trators who want to learn how to configure the application server.

 After knowing whom the book was geared toward, I had to decide what version of
the software to cover. When I started, JBoss AS 4 was widely deployed; but, because
JBoss AS 5 was originally supposed to be released in 2006, I opted to cover JBoss AS 5 so
that the book wouldn’t be outdated as soon as it was published.

 Deciding whom the book would be geared toward and what version I wanted to
cover was relatively easy. Writing the book was a whole different game! I didn’t appre-
ciate the myriad facets of an application server I’d have to understand in order to
write a comprehensive book. An application server is like a universe, and few people
are masters of more than a few parts of that universe. Although I had a good under-
standing of many parts of JBoss, I quickly realized that I had to learn a lot more.
Another challenge was that I was covering JBoss AS 5, which was actively being devel-
oped. Every time I thought I had something figured out, it changed. I ended up
spending an enormous amount of time trying to work around bugs in beta releases
and trying to keep up with design discussions on the developers’ forums.

 In July of 2006, I realized I was in way over my head. I still thought that the JBoss
AS 5 release was around the corner, so I told Manning that I wanted to bring some-
body in to help me get the book out on time. I called everybody I knew and I scoured
through the JBoss forums looking for people. I had a few leads, but I was most
impressed with Peter Johnson. I found him on the forums, answering question after
question. He provided detailed explanations, gave plenty of references and back-
ground, and used eloquent language.

 After talking to Peter, I realized that he had significant experience with JBoss AS. He
works for Unisys, which has been a JBoss Partner since JBoss AS 3.2.3 came out, and was
technical lead for the team that evaluated JBoss AS for its enterprise readiness. The lack

PREFACE xix
of a decent administrative interface to JBoss AS was one of his concerns, which caused
him to lead a team that developed an administration console which was open-sourced
by Unisys and made available for JBoss AS versions 2.2.7 through 4.2.3. He and a few of
his coworkers also worked with the JBoss admin console team on a proposed admin
console that was to come out with JBoss AS 5, but was later dropped in favor of Embed-
ded Jopr.

 Unisys, as a good corporate citizen in the open source community—not just taking
but also giving back—allowed Peter and his coworkers to participate in various ways,
such as providing patches to improve performance of JBoss AS and PostgreSQL. Hav-
ing been a teacher in a former life, Peter knew that the best way to learn a new topic is
to try to explain it to others. He hung out in the forums, seeing what kinds of ques-
tions people asked, trying out what he thought were the solutions, and posting
answers when he felt he could offer help or insight. By participating in the forums, he
could kill two birds with one stone: give back to the open source community and gain
a deeper understanding of JBoss AS.

 Peter was excited to join the project, and we seemed to agree on almost every-
thing. We shared the same vision for the audience and direction of the book, and he
dove right into writing, pushing out chapter after chapter, and providing me with
great feedback on what I had already written.

 With my background teaching JBoss courses and Peter’s fervent dedication to the
online forums, we had experience fielding many common questions. We decided to
focus the book on the most common things that new and intermediate users of JBoss
AS try to configure. For the most part, each chapter provides you first with back-
ground information and then with specifics on configuring common things for the
part of the application server covered by the chapter.

 As for JBoss AS 5, the release date kept getting pushed back. This was expected
because the application server underwent several major architectural and infrastruc-
tural changes. As I write this preface in December of 2008, the GA release of JBoss AS 5
has just been released. We’re expecting a final release in January 2009, which should
coincide with the U.S. print version of this book. Peter and I have been working long
and hard on this project, and we hope that you find that it answers most of your basic
questions and gives you enough background to figure out the ones that it doesn’t.

 JAVID JAMAE

acknowledgments
We’ve learned firsthand that it takes a village to publish a book. Although we get the
privilege of seeing our names on the front cover, dozens of other people have contrib-
uted to putting it all together. We’d like to thank everyone at Manning, especially our
publisher, Marjan Bace, and our development editors, Howard Jones, Joyce King,
Jackie Carter, and Nermina Miller (we were really hard on our editors, so we went
through a lot of them), for their continuous support and help on so many aspects of
the manuscript. Thanks also to the others at Manning who worked with us in different
stages of the project: Andrea Kaucher, Katie Tennant, Gordan Salinovic, Gabriel
Dobrescu, Steven Hong, Leslie Haimes, and Mary Piergies.

 Many reviewers read the chapters during various stages of completion and pro-
vided valuable feedback and input that helped to make the book what it is today. We
would like to thank Anil Saldhana, Tray Scates, David Strong, Scott Dawson, Patrick
Dennis, Norman Richards, Andrew C. Oliver, Scott Stirling, John Tyler, Nathan Slip-
pen, Michael Abney, Deepak Vohra, TVS Murthy, Sumit Pal, Bas Vodde, Goldy Lukka,
and Riccardo Audano. We especially want to thank David Strong and Rod Coffin who
provided detailed notes on things that needed to be corrected. Rod also did a final
pass through the manuscript just before publication, ensuring that the technical con-
tent and code were up to date and correct.

 Thanks to Vo Blinn, Bongos, Robert Jackson, Alan C, Jan Nielsen, James Hood,
Vulinh Nguyen, and many others for picking up the book as part of the Manning Early
Access Program (MEAP), and providing input such as spelling corrections, references
to sections that had moved or been deleted, and input on various topics that they’d
like to see covered.
xx

ACKNOWLEDGMENTS xxi
Javid Jamae
To my wife Elizabeth—I love you, and I couldn’t have done this without you. Words
cannot express my gratitude. To my kids Austin, Sina, and Kian—I’m glad I’ll have
much more time to spend with you now. Thanks to my parents for all their support.
And a big thanks to my in-laws Jack and Pam for helping us out so much over the
course of the last several years.

 Thanks to all the folks at Manning (especially Andrea and Nermina) for helping
form the book into what it is. Thanks to Rod Coffin for his excellent technical review
of the book. And last but not least, thanks to Peter for joining me to write this book.
It’s been a pleasure working with you.

Peter Johnson
I would like to thank my wife Sandy for her support and understanding over the
course of this project. You are my number one cheerleader, and I love you for it. I also
want to thank my daughters, Cheryl and Alexa, who provided welcome diversion when
I needed to step away from the book.

 I also want to thank Tony Sarris, my manager at Unisys, and the rest of the Unisys
management team, for supporting me in this effort.

 I had several technical reviewers of my chapters that I want to thank. Julien Viet
took time off from coding the JBoss Portal to review the portal chapters. Tray Scates
and Scott Dawson reviewed and provided technical input for all of the chapters that I
wrote. I even want to thank Jim Fontana for reviewing the chapter that did not make it
into the book. Those are the breaks, Jim.

 Finally, I would like to thank my mom and dad, Erika and Jerry, who at a very early
age taught me that one plus one was zero with one to carry.

about this book
One of the things you quickly realize when you work with any of the technologies cov-
ered by the Java EE umbrella is that many things are part of the specification, and
some things are left as “implementation details” or left up to the implementer’s dis-
cretion. In practice, this means that any time you learn a Java EE technology, besides
learning the fundamentals about that technology, you also need to learn how to apply
or configure the technology in the environment in which you wish to deploy it. If your
deployment environment of choice is the JBoss Application Server, then this book is
for you because it covers those areas that are outside the scope of the specifications.

 In this book, we cover a wide variety of technologies and show you how to config-
ure those technologies specifically for use in the JBoss Application Server. Naturally,
this can’t be done in a vacuum, so we provide simple examples that illustrate the tech-
nology and then walk you through the steps necessary to configure things such as
deployment descriptors, access control, and encryption. Our intent isn’t to describe
every nuance of any particular technology. For that, we recommend that you read
books particular to those technologies (and we provide references at the end of most
chapters). Instead, use this book to learn how to use the technology within the JBoss
Application Server.

 We believe that you learn more by trying things out for yourself than by reading about
how it’s done. By keeping our examples simple, we’re able to provide complete source
code, including configuration files, within the book itself. If you want, you can try the
examples using only the text in the book. All you need is a text editor. But we don’t pro-
vide build scripts in the book; instead, we provide diagrams showing the contents of the
xxii

ABOUT THIS BOOK xxiii
resulting packages (JAR, WAR, EAR, and so on). We assume that you can use whatever
tools you’re familiar with to compile and package the applications.

Audience
As programmers at heart, we wrote the book from a programmer’s point of view. Any
programmer that uses the JBoss Application Server in his or her daily routine will ben-
efit from reading this book. But we went beyond mere coding to look at what it takes
to get an application configured and into production.

 With its focus on configuration topics, this book is also ideal for use by system
administrators who need to configure and deploy applications to the JBoss Applica-
tion Server. Many of the chapter introductions guide administrators, pointing out the
sections on which they should focus.

Roadmap
This book is divided into four parts. Part 1 covers JBoss Application Server (JBoss AS)
basics. Here’s where you’re introduced to the application server, how it’s configured,
and how applications are deployed; you’re also given an overview of security. Part 2
gets into individual Java EE technologies, such as web applications, enterprise applica-
tions, and messaging, and describes their configuration in detail. Part 3 covers the
JBoss Portal, describing portal administration and configuration. Finally, Part 4 covers
topics that you’ll want to consider when going into production—things such as per-
formance tuning, clustering, and a whole checklist of other items.

 Chapter 1 gives you a 10,000-foot view of JBoss AS by showing you how to down-
load, install, run, and deploy into it. You’ll learn about the installation structure and
where important server configuration files go. We also provide you with some history
and an architectural discussion to give you a broader background on the product.

 Chapter 2 provides a first look at configuring the application server. The tech-
niques you learn here will be useful in the chapters that follow. You’ll learn how the
application server is architected and, from there, how you go about configuring it.
The chapter continues by describing various configuration topics not covered else-
where and concludes with a look at some of the tools you can use to administer the
application server.

 Chapter 3 discusses deploying applications and contains a discussion of class load-
ers. From the JBoss forums, we’ve gleaned some of the common deployment errors
that crop up and have provided solutions to those issues. We end the chapter describ-
ing how to deploy data sources and Hibernate archives.

 Chapter 4 introduces you to security in JBoss AS. We start with a general overview
of basic security concepts such as authentication and authorization. We then discuss
how these concepts are implemented in JBoss AS. Finally, we show you how to config-
ure security in JBoss, demonstrating how you can access security data from a database,
LDAP, or other security datastores. After reading this chapter, you should have a gen-
eral understanding of how to configure security in JBoss.

ABOUT THIS BOOKxxiv
 Chapter 5 discusses the JBoss AS web application server, known as JBoss Web Server.
First, you’ll learn how to build and deploy web applications. Then, you’ll learn the
basics on how to configure web applications and JBoss Web Server. Finally, we build on
the basic configuration knowledge to show you a number of practical things that you
can configure in your web applications.

 Chapter 6 merges the discussions in chapter 4 and chapter 5 to show you how to
configure security for web applications. We’ll teach you how to use all the standard
web authentication models and how to tie them into your own security datastore.
We’ll also teach you how to use secure public-key communication to encrypt access to
your site.

 Chapter 7 talks about EJB applications and the EJB server, the heart of JBoss AS. We
show you how to structure, deploy, and configure EJB applications. Then, we show you
how to configure the application server, enabling you to do things such as change the
communication transport and secure EJB applications.

 In chapter 8, you’ll learn about configuring JBoss Messaging, which is the JMS-com-
pliant messaging server bundled with the JBoss Application Server. The chapter starts
off describing JMS and how JBoss Messaging is architected. We present a simple mes-
saging client application and then expand it to include a message-driven EJB and a
message-driven POJO. We use this client to describe messaging configuration topics
such as changing the messaging store to use another database, defining your own des-
tinations, providing access control, and encrypting messaging data.

 Chapter 9 covers JAX-WS–based web services. After a brief introduction into web
services, we present a simple POJO-based web service and its client. We expand the
example by converting the web service into an EJB, and developing a C# client for the
web service. We use the example to describe various configuration topics such as
describing the web service using both annotations and descriptor files, configuring
access control, and using WS-Security to both encrypt and sign web service messages.

 Chapters 10 and 11 provide an introduction into the JBoss Portal. Chapter 10 starts
with a description of portals in general and the JBoss Portal in particular. We explain
how to install the Portal and set it up to use a database. Then, we provide an example
portlet that’s a little more complex that the other examples in this book because we
want to highlight various portlet coding techniques. We then use the example to
describe how to configure the Portal to include the portlet, using both configuration
files and the Management Portlet. In chapter 11, you’ll learn how to use the Content
Management System (CMS) that comes with the JBoss Portal, and how to define access
control for your portal and portlets. The chapter ends with a section that puts every-
thing you learn together to create a custom portal.

 Chapter 12 introduces clustering in JBoss AS. This chapter talks about the basics of
clustering and shows the location of all the configuration files and how to configure
the underlying clustering services. You’ll set up a simple cluster in this chapter and
learn how to configure JGroups and JBoss Cache.

 Chapter 13 builds on this background from chapter 12 to show you how to config-
ure clustering for specific services. You’ll learn how to configure HTTP load balancing

ABOUT THIS BOOK xxv
and HTTP session replication, how to cluster session EJBs, how to cluster entities, and
how to configure high-availability JNDI.

 In chapter 14, we present ways to assess the performance of your deployed applica-
tions and practical steps for improving the performance. We examine performance
using a holistic approach, looking at tuning the hardware, operating system, database,
JVM, application server, and your application. We give detailed information on prop-
erly sizing the Java heap, and tips on how to interpret thread dumps to pinpoint per-
formance issues within your code.

 We end the book in chapter 15 with a checklist of items you’ll want to consider when
moving your applications into production. Besides referring you back to prior chapters
for topics we’ve already covered (such as clustering and performance tuning), we cover
such topics as selecting the proper platform (operating system, JVM, and application
server), running multiple instances of the application server on a single host, slimming
the application server by removing services you don’t need, securing or removing the
default applications, replacing the Hypersonic database with a production-worthy data-
base, configuring the application server to run as a service so that it will start up auto-
matically when the server is booted, and configuring JSP compilation.

 Appendix A discusses JNDI. First, you’ll learn about how to configure the Environ-
ment Naming Context, allowing you to define local names for your resources and
beans. Then, we show you how to explore what’s in JNDI by using the JMX console.

 Appendix B covers last-minute changes to JBoss AS that were made too late to be
included in the earlier chapters because they had already gone to the printer. We held
off on sending this appendix to the printer for as long as possible to get you all of the
latest JBoss AS developments.

Source code conventions and downloads
The source code for the various examples in this book is available for download from
www.manning.com/JBossinAction. After downloading the zip file, unzip it, and open
the index.html file in the base directory using your favorite browser. (We recommend
Firefox.) That file provides all the information you need to build, deploy, and experi-
ment with the examples. And we provide build scripts!

 All source code in listings or in text is in a fixed-width font like this to separate
it from ordinary text. Occasionally, text or commands that should be all on one line
are wrapped to two or more lines. In such cases, the continuation lines begin with a
continuation character (➥,) as in this example:

$JAVA_HOME/bin/java –classpath .:/home/jbia/jars/log4j.jar

➥ org.jbia.example.Client arg1

Pay close attention to the continuation characters when used in an XML file listing.
Often, the service reading the XML won’t trim whitespace characters from the text, caus-
ing the text to be misinterpreted. For example, consider the following example XML:

<some-stuff>

➥ really great stuff
➥ </some-stuff>

www.manning.com/JBossinAction

ABOUT THIS BOOKxxvi
You should type it, as follows:

<some-stuff>really great stuff</some-stuff>

Most example commands are provided in an operating system–neutral fashion rather
than showing the command twice, once for Windows and again for Linux. Consider
the following generic command:

wsrunclient –classpath target/dist/client.jar org.jbia.ws.Client

Notice two things: First, we provide the script name without any suffixes or prefixes,
and we use forward slashes as directory separators in file names. This command would
be entered in Windows as

wsrunclient –classpath target\dist\client.jar org.jbia.ws.Client

And in Linux as

./wsrunclient.sh –classpath target/dist/client.jar org.jbia.ws.Client

Unless otherwise specified, all relative paths are within the JBoss Application Server
installation directory. In addition, we use the text xxx to mean any of the configurations
within the server directory. As an example, if you install JBoss AS at c:\jboss-5.0.0.GA,
then the text server/xxx/conf/jboss-service.xml refers to the files c:\jboss-5.0.0.GA\
server\default\conf\jboss-service.xml, c:\jboss-5.0.0.GA\server\all\conf\jboss-service.xml,
and to any similarly located jboss-service.xml files in other configurations you might
have in the c:\jboss-5.0.0.GA\server directory.

 Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered bullets link to explanations that follow the listing.

 If you have the PDF version of this book, beware of copying example code from the
PDF file to a command line or text editor. For example, the dash character (-) within
the PDF file is typically not the dash character (ASCII character 0x2D) expected by soft-
ware. You’ve been warned.

On versions of JBoss middleware
Writing a book about a version of the JBoss Application Server that hasn’t reached
general availability (GA) is a calculated risk. When we started this project in the sum-
mer of 2006, 4.0.4 was the latest version with talk of the 5.0 version being released
early in 2007. We figured that by the time we got the book done, 5.0 would be out.
Well, in the spring of 2007, 4.2.0 came out, and 5.0 was only at beta 2. We put the book
on hold until 5.0 beta 3 came out; when beta 4 came out soon after, it had so many
changes that once again we put the book on hold until CR1, and then verified again
on CR2 before starting to send the chapters to the printer.

 Although we’ve endeavored to ensure that the configuration settings we provided
will be correct for the final release, there are no guarantees. We recommend that you
check the website for the book (www.manning.com/JBossInAction) for any
addendums. But, we will ensure that the source download works correctly with JBoss

www.manning.com/JBossinAction

ABOUT THIS BOOK xxvii
AS 5.0.0.GA within two or three weeks after it’s released. Check the index.html file in the
source code download for the exact version that it works with.

 JBoss Portal is a different story. The chapters on the portal are based on
the 2.6.4.GA release running on JBoss AS 4.2.2, and were later verified with JBoss
AS 4.2.3 and Portal 2.7.0. As of this writing, there’s no clear roadmap of which ver-
sion of the Portal will work with JBoss AS 5.0.0.GA. We will put a notice in the Author
Online forum when this situation changes.

Author Online
Purchase of JBoss in Action includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the authors and from other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/JBossinAction. This page
provides information on how to get on the forum once you’re registered, what kind of
help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It isn’t a commitment to any specific amount of participation on the part of the
authors, whose contributions to the book’s forum remain voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interests stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors
Javid (pronounced JAW-veed) Jamae has been a programmer his whole life, starting on
Applesoft BASIC at a young age and dabbling with a myriad different programming
languages before getting paid to write code in Java in the late 90s. Working as a consul-
tant, trainer, and software coach for several years, Javid had the opportunity to work on
many different projects in many different industries. Javid has also published many
Java-related online and print articles over the last several years. Javid lives in Houston
with his wife and three kids and is currently plotting ways to start the next multi-billion-
dollar software company.

 Peter Johnson started his computer career in 1980 supporting a COBOL account-
ing package running on a Burroughs mini-computer. He started working in Java
in 1998, and was lead designer on projects such as a JDBC driver for the DMSII data-
base that runs on Unisys mainframes. For the past several years, he has been chief
architect on a team that analyzes performance of Java applications on large-scale
Intel-based machines (8 to 96 CPUs) and evaluates various open source software for
enterprise readiness. Peter speaks often about Java performance and JBoss technolo-
gies at industry conferences such as the Computer Measurement Group conference,
Linux World, and JBoss World.

www.manning.com/JBossinAction

ABOUT THIS BOOKxxviii
About the title
By combining introductions, overviews, and how-to examples, the In Action books are
designed to help learning and remembering. According to research in cognitive sci-
ence, the things people remember are things they discover during self-motivated
exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play, and,
interestingly, retelling of what is being learned. People understand and remember
new things, which is to say they master them, only after actively exploring them.
Humans learn in action. An essential part of an In Action book is that it’s example-
driven. It encourages the reader to try things out, to play with new code, and explore
new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or solve a problem. They need books that allow them
to jump in and jump out easily and learn just what they want just when they want it.
They need books that aid them in action. The books in this series are designed for
such readers.

about the cover illustration
The figure on the cover of JBoss in Action is a “Sword-bearer to the Grand Signior.” The
illustration is taken from a collection of costumes of the Ottoman Empire published
on January 1, 1802, by William Miller of Old Bond Street, London. The title page is
missing from the collection and we have been unable to track it down to date. The
book’s table of contents identifies the figures in both English and French, and each
illustration bears the names of two artists who worked on it, both of whom would no
doubt be surprised to find their art gracing the front cover of a computer program-
ming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor did not have on his person the substantial amount of
cash that was required for the purchase and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed that
the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred the funds the next day, and we remain grateful and impressed by
this unknown person’s trust in one of us. It recalls something that might have hap-
pened a long time ago.
xxix

ABOUT THE COVER ILLUSTRATIONxxx
 The pictures from the Ottoman collection, like the other illustrations that appear
on our covers, bring to life the richness and variety of dress customs of two centuries
ago. They recall the sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.

Part 1

The JBoss Application Server

The book is about configuring the JBoss AS and the applications deployed to
it. We start the book with a quick introduction into the JBoss Application Server
(JBoss AS). Chapter 1 gets you up and running with a simple web application. It
also describes the directories and files that are part of the JBoss AS distribution.
Those descriptions will come in handy in the following chapters when we look at
many of the files and directories in more detail.

 Chapters 2 through 4 provide overview information—general things that
you’ll need to know as you read the rest of the book. Chapter 2 provides an over-
view of what configuration means within JBoss AS. Chapter 3 covers how to
deploy applications; almost all the other chapters rely on this knowledge as you
deploy web application, enterprise application, web services, and even portlets.
Finally, chapter 4 discusses how security works within JBoss AS. Security is also a
topic that we return to time and again in later chapters as we tell you how to
secure web applications, EJBs, web services, and so on.

Vote for JBoss
In 2005, I (Javid) attended the Houston JBoss User Group meeting to watch a pre-
sentation on the Enterprise Java Beans 3.0 (EJB3) specification. The speaker was
wearing a T-shirt with Vote for JBoss printed across the front. This was a reference to
the movie Napoleon Dynamite, a cult-hit comedy in which the main character, Napo-
leon, a nerdy high-school student, sports a shirt with the words Vote for Pedro printed
on the front to support his friend’s campaign for student-council president.
Although the T-shirt was intended as a parody of popular culture, it stimulated me
to think about the words Vote for JBoss more literally.

 Voting is part of the democratic process, but the word also has capitalistic signif-
icance. In capitalism, people vote with their wallets; so it’s easy to vote for JBoss
because it has a free, open source license, costing nothing to download, install, and
use. Thousands of programmers vote for JBoss every year. As a reader of this book,
you’re one of those who voted for JBoss and are probably interested in finding out
more about the JBoss products and how to work with them.

This chapter covers
■ Installing JBoss AS
■ Exploring the JBoss Directory Structure
■ Starting and stopping the Server
■ Deploying and undeploying applications
3

4 CHAPTER 1 Vote for JBoss
 To open this chapter, we talk about what JBoss is and why it’s so popular. The rest
of the chapter guides you on how to dive in and get started with the JBoss Application
Server (JBoss AS). We discuss how to install, how to start and stop, and how to deploy a
basic application into the server. We also explore the structure of the application
server and show you how to configure the server to suit your needs.

1.1 Introducing JBoss
When Java first came out in 1996, many people created their own application infra-
structures from scratch, reinventing the wheel for many aspects of their applications.
The Java 2 Enterprise Edition (J2EE) specification—the predecessor to the current
Java EE specification—aimed at creating a standardized application framework for
enterprise applications development.

 In 1999, Marc Fleury started a small open source project called JBoss, which pro-
vided an implementation of the Enterprise Java Bean (EJB) portion of the J2EE specifi-
cation. As the project became popular, the developers started selling documentation,
consulting services, and training. By 2001, Fleury and company incorporated as the
JBoss Group, LLC, and started offering developer support services in 2002. In this
same timeframe, they made available JBoss AS 3, which emerged to become a full-
fledged J2EE application server that was competitive with proprietary application serv-
ers such as WebSphere and WebLogic.

NOTE The name of the project was originally EJBoss (Enterprise Java Beans
Open Source Software). Sun didn’t like the use of their EJB trademark,
so the E was dropped from the project name, making it JBoss.

The JBoss Group, LLC, became a corporation under the name JBoss, Inc., in 2004.
With the introduction of JBoss AS 4, JBoss, Inc., started offering production support
services for enterprises. JBoss AS 4 has become a popular application server and is still
widely deployed throughout the industry. JBoss, Inc., also expanded its offerings to
more than an application server. Many of the components that ran within JBoss AS
could be run independently outside of JBoss AS, such as JBoss Cache, Hibernate,
jBPM, and JBoss Rules.

 Red Hat, Inc., bought JBoss, Inc., in April 2006. The popularity of JBoss AS contin-
ues to rise with the new and innovative features in JBoss AS 5. Although the majority of
this book covers JBoss AS 5, select chapters cover other hot technologies, such as JBoss
Portal, that can run on top of the application server.

 So what exactly is JBoss, and why do you need it? Let’s look at what JBoss is and why
it has become so popular in the industry.

1.1.1 What is JBoss?

The word JBoss is used to refer to several things: the division of Red Hat that develops
software products, the trademark used for all the products that the group makes, and
an application server. When people use the term JBoss, they’re usually referring to
JBoss Application Server, commonly abbreviated as JBoss AS. Throughout this book,

5Introducing JBoss
we use the term JBoss AS to refer to JBoss Application Server version 5 or specify if we
mean otherwise. In order to avoid confusion between the term JBoss, the application
server, and JBoss, the division of Red Hat, we use the term Red Hat to refer to the com-
pany that makes JBoss products.

 JBoss AS is a Java Enterprise Edition 5 (Java EE 5)–compliant application server. A
Java application server standardizes the application development architecture. It does
this by defining several component models—standards that developers can use to
develop components. These components can be deployed into an application server
using a standard deployment model. When the components are running in the server,
the server provides a set of services that are made available to the components.

 The application component models include standards such as Enterprise Java-
Beans (EJBs), Java Server Pages (JSP), and servlets. Some examples of Java EE services
that are available to these components include remoting, security, transaction man-
agement, persistence, messaging, resource pooling, concurrency control, naming and
directory services, and deployment.

 An application server is a place to run your Java code. What do we mean by this?
Without an application server, you’d write your application code and start your appli-
cation using a main method. Somewhere in your application you’d need to start all
the various services that you might need to access (for example, a database connec-
tion pool; a transaction manager; clustering services; security services). The left side of
figure 1.1 shows an example of the code you’d have to write to start all the services
that you reference.

 The left side of the figure shows an application with domain code and code that
integrates into various frameworks that provide services to the domain code. In this
style, you write code to integrate with the various services and, perhaps, the servic-
es themselves.

 The right side of the figure shows how things work in an application server environ-
ment. With an application server, you write your application code using a standard com-
ponent model, package it into a standard archive format, and then deploy the archive
into the application server, which starts your application and all services that your

Figure 1.1 The left side shows an application that runs outside of an application server.
The right side shows an application that plugs into the application server.

6 CHAPTER 1 Vote for JBoss
application needs to access. Because you’re working within a standardized framework,
the services are typically made available to your code transparently. You only have to pro-
vide metadata—in the form of annotations or Extensible Markup Language (XML)—to
hook the services into your components; no code is typically necessary.

 Programming with the Java EE standard and using an application server can drasti-
cally reduce the amount of integration code and configuration that you’d otherwise
need. In addition, it often prevents you from having to write application services from
scratch. Java EE 5 defines many components and services; a list can be found on the
Sun website, http://java.sun.com/javaee/technologies/.

 Besides JBoss AS, Red Hat provides several software products that you can use
either on top of the application server or independently in your own application envi-
ronment. Let’s explore this set of products.

1.1.2 Exploring the JEMS lineup

JBoss AS is the core product in Red Hat’s suite of Java middleware products that they
collectively call the JBoss Enterprise Middleware Suite (JEMS). All the other JEMS
products integrate with the JBoss AS, and many of them can also run outside of the
application server in Java SE applications. Table 1.1 summarizes the various JEMS tech-
nologies and tells you where you can learn more about them.

Table 1.1 Technologies in Red Hat’s JEMS

Technology Summary Chapter(s)

JBoss
Microcontainer

The configuration framework used to wire together JBoss AS services. The
microcontainer can also be used as a general purpose dependency injection
framework.

2

Hibernate An Object-Relational Mapping (ORM) tool used to implement the persistence
portion of the EJB3 specification.

3, 7

JBoss SX A role-based declarative security service used by many JBoss AS services. 4, 6, 7, 8, 11

JBoss Web
Server

A fast, native Web server that also enables usage of web technologies such as
servlet, JSP, and JavaServer Faces (JSF).

5, 6, 12–13

EJB Server An implementation of the EJB3 specification. 7

JBoss Messaging A JSR-914–compliant Java Messaging Service (JMS) messaging server. 8

JBoss Portal A JSR-168–compliant portal server. 10–11

JBoss Clustering A self-forming clustering framework. 12–13

JBoss Cache A transactional, distributed, in-memory cache used by many JBoss AS services. 12–13

JBoss
Transactions

A distributed transaction technology supporting Java EE, Common Object
Request Broker Architecture (CORBA), and Web Services standards (formerly
Arjuna Transaction Service Suite). The JBoss Transactions service is used by
many JBoss AS services.

Not covered

JBoss Rules A JSR-94–compliant rules engine (formerly Drools). Not covered

http://java.sun.com/javaee/technologies/

7Introducing JBoss
Many of these technologies are so involved that they warrant their own books. Unfor-
tunately, we can’t cover every technology listed in table 1.1; and those that we do
cover can only have one or two chapters dedicated to them. Most of this book focuses
on the core application server services and a subset of the most popular products that
build on top of it. While we’re on the topic of popularity, let’s talk about why JBoss AS
is so popular.

1.1.3 Why is JBoss AS so popular?

In addition to license costs, the real cost of adopting a new product is a function of
many things, including how long it takes to learn, how easy it is to use, the quality of
the product, and the quality of support. Companies pay for training and support, so
they can survive those last-minute issues that inevitably arise a week before a critical
release. Some people even view a free license as a con when evaluating products
because of stereotypes that open source software products are low-quality hacks that
ultimately result in high cost and risk for the company. “How could it possibly be good
if they’re giving it away for free?” some may ask.

 But JBoss AS doesn’t fit this stereotype. More and more companies are choosing
JBoss AS as a production application-server platform, and some research (such as that
from BZ Research) shows that JBoss AS is a market leader in the Java application server
space. Why is JBoss AS so popular?

NOTE Unfortunately, most major market-share research studies have excluded
Red Hat’s JBoss AS because they generate their statistics based on license
sales. Red Hat doesn’t charge per license for JBoss AS, making it difficult
to compare apples to apples. But a few survey-based research studies have
been done that show usage percentages that include JBoss AS. A Decem-
ber 2005 survey by BZ Research concludes that JBoss AS is tied for first
with IBM at about 37% each. BEA and Oracle follow at about 27% each.
(These numbers add up to more than 100% because some companies
use more than one brand of application server.)

We argue that it’s not only cost that makes JBoss AS so popular. The success of JBoss
AS is a result of producing a competitive product and being open source. You may

jBPM A full-featured business process management (workflow) engine. Not covered

Red Hat
Developer Studio

A set of plug-ins that extends the Eclipse development platform to enable web
application development.

Not covered

Seam An application integration framework that can reduce boilerplate code used to
write many web applications. This framework is the underpinning of the pro-
posed WebBeans Java specification (JSR 299).

Not covered

JBoss AOP An aspect-oriented-programming framework. Not covered

Table 1.1 Technologies in Red Hat’s JEMS (continued)

Technology Summary Chapter(s)

8 CHAPTER 1 Vote for JBoss
wonder how one Java EE–compliant application server can compete with another.
They’re all following the same specification, so how can one be better than another?
The same ways that 802.11-compliant wireless router manufacturers and HDTV manu-
facturers compete: price, features that go above and beyond those defined in the spec-
ification, ease of use, time to market, and support.

 The Java EE specification standardizes many things, but not everything. JBoss AS
has many easy-to-use features that go above and beyond the Java EE specification. For
example, setting up a JBoss AS cluster requires minimal configuration. JBoss AS is also
good at staying ahead of the curve when new technology specifications come out. For
example, JBoss AS has had support for Java SE 5.0 and EJB3 since 2005, while other
major players dragged their feet for two or more years.

 JBoss AS also has the advantage of being an open source software application. What
advantages does Red Hat’s open source model give JBoss AS over other proprietary
application servers? Consider this: A programmer can download JBoss AS, install it,
start it, and deploy an application into it in under 10 minutes, all without worrying
about obtaining a license. Programmers find that it’s easy to experiment with JBoss AS
and learn how to use it. They also love the fact that it’s free. Many have never used
JBoss AS on a production application but have tinkered around with it out of curiosity
or for side projects. They often use JBoss AS to learn how to do Java EE development at
home, even though their work environment may be running on a proprietary applica-
tion server.

 Programmers are able not only to play around with JBoss AS but also to have a view
into the JBoss AS project’s transparent development process. They can view the bug-
tracking database, read about designs for upcoming features, and look through the
developer forums to see what the lead developers of the different product modules
are discussing. They can also look through the code to understand it, to debug issues,
or to learn how JBoss AS works. Best of all, they can contribute to the process on sev-
eral different levels. They can report, comment on, and discuss issues with the devel-
opers who are working on them. If there’s a bug in a feature of JBoss AS that they’re
using, they can patch it and submit it for acceptance into a future release. Or, if
they’re particularly devoted, they can become regular contributors and take on pro-
gramming tasks.

 Because of the participatory nature of open source, large communities form around
such popular products. JBoss AS has a large, international community that provides sup-
port through user groups, forums, and wikis. It’s often easier to find this type of free
public support for large open source applications than it is for proprietary applications.
Because popular open source products like JBoss AS have a user base that’s significantly
larger and more involved than proprietary competitors, bugs are often found and
patched faster in open source applications than in proprietary applications.

 JBoss AS isn’t the only open source application server out there. Other open source
application servers include WebSphere Community Edition (CE), Geronimo, and
GlassFish. All of these have their pros and cons. WebSphere CE and Geronimo are

9Installing JBoss Application Server
both generally behind the pack as far as adoption of new technologies and specifica-
tions, but they do offer strong administration consoles. GlassFish is another Java EE
5–compliant application server, but JBoss AS has been around longer and is consid-
ered to be a more mature product in several areas.

 Okay, that’s enough philosophizing about the virtues of open source. After all,
we’re geeks and we just want to dive in and start using the technology.

1.2 Installing JBoss Application Server
Installing JBoss AS is simple. When you go to the JBoss AS download site, you have the
option to download JBoss AS as a zip file or to install it using an installation wizard,
called the JEMS Installer. The fastest and easiest way to install JBoss AS is to download
the binary distribution and unzip it to a directory on your machine. This isn’t a bad
thing to do if you’re trying to get a running application server quickly—what the stan-
dard installation is intentionally designed for. But this is at the cost of having an instal-
lation with all security turned off, and many development-centric features (such as hot
deployment) turned on. If you go this route, you have to secure and customize your
server’s configuration when you’re ready to put your server into production.

 As we discuss in section 1.3.6, JBoss AS is built on a modular architecture that
allows you to run only the particular services that you need for your application envi-
ronment. Using the JEMS Installer allows you to select only the services that you want
running in your server. As we discuss in chapter 15, you can remove services manually
(called slimming the server), but the installer can make it easier because you don’t
have to keep track of which services have dependencies on other services. The
installer also allows you to secure the prepackaged management applications that ship
with JBoss AS.

 Whether you use the installer or install JBoss AS from the binary distribution, the nice
thing about the JBoss AS installation is that there are no hidden files or settings that end
up in places that you don’t know about—such as the system registry in Windows. JBoss
AS and all of its configuration files are contained entirely under a single directory struc-
ture. If you want to uninstall JBoss AS, you delete the entire directory structure. If you
want to move the installation somewhere else, you move the entire directory structure.
After you have a customized configuration on one machine, it’s best to duplicate the
existing configuration on other development or production machines rather than try-
ing to manually re-create the configuration or trying to rerun the installer.

 As we’ll discuss in section 1.3.8, one of the best things to do is to version-control
the entire server structure (or at least the configuration directory). If you choose to
use the installer, our recommendation is to use it to install JBoss AS on a single
machine, customize the server’s configuration, version-control the configuration, and
then check out the latest configuration on other machines. This helps you ensure that
your server configuration is exactly the same across installations.

 In this section, we’ll discuss how to prepare for installing JBoss AS and how to
install JBoss AS using either the binary distribution or the installer.

10 CHAPTER 1 Vote for JBoss
1.2.1 Preparing for the installation

If you have the Java Development Kit (JDK) or Java Runtime Environment (JRE)
installed, you’re pretty much ready to run JBoss AS. Previous versions of JBoss AS
required a JDK because it comes with a Java compiler whereas the JRE doesn’t. JBoss AS
needs a compiler in order to dynamically compile JSP files at runtime. JBoss AS 5 now
ships with a library called the Eclipse JDT (from Eclipse IDE fame) that can compile
Java code at runtime; therefore, a JDK isn’t required to run JBoss AS 5. That being said,
if you install JBoss AS 5 in a development environment, you may need a JDK installed
on your machine to develop Java applications if you don’t use an IDE, like Eclipse,
with its own compiler library.

 Most people use Sun’s Software Development Kit (SDK), but we discuss how to
select a different platform in chapter 15. After installing the JRE or the SDK, the only
other thing you need to remember to do is set up an environment variable called
JAVA_HOME that points to the root directory of your SDK or JRE installation. Depending
on how you installed the SDK or JRE, you may already have this environment variable
configured. In that case, you’re good to go. If you don’t, you’ll have to learn how to set
environment variables for your OS.

 For Windows XP systems, right-click My Computer and select the Properties option
from the context menu (or hold the Windows key down and press the Pause/Break
button). After the System Properties window comes up, click the Advanced tab and
then Environment Variables. Figure 1.2 shows you the applicable screens. Setting envi-
ronment variables on most other versions of Windows is similar to Windows XP.

Figure 1.2 You can use the Environment Variables dialog under Windows XP’s System
Properties to configure the JAVA_HOME environment variable.

11Installing JBoss Application Server
For UNIX-type systems, add a set command to the startup script that sets up your envi-
ronment. You might also have to export it, as follows:

set JAVA_HOME=/usr/home/jdk1.5.0
export JAVA_HOME

After setting the JAVA_HOME directory, you can download either the binaries or the
installer for JBoss AS from the JBoss website.

1.2.2 Installing from the binary distribution

Installing from the binary distribution is easy because there’s no installation; first, you
download the distribution archive (a zip file), and then you unzip it into a directory.
That’s all that you need to do. You can download the binary distribution from http://
labs.jboss.com/jbossas/downloads. If you want to jump ahead, you can start the server
by going into the bin directory and executing either the run.bat for Windows or the
run.sh for UNIX. On UNIX you may have to make the shell scripts executable first.

 JBoss runs on top of a Java Virtual Machine (JVM), but some things are done better
with native operating system functionality. For example, web pages can generally be
served with better performance when using native libraries. Running an application
as an operating-system service is also more easily accomplished with native support.
For these things, JBoss provides a supplementary library called JBoss Native that can
be downloaded and unzipped into your application server’s bin directory. You can
download JBoss Native from http://labs.jboss.com/jbossweb/downloads/.

 See the references section at the end of this chapter for links to the JBoss wiki that
explain how you can use the JBoss Native library.

1.2.3 Using the JEMS Installer

To download the installer, go to http://labs.jboss.com/jemsinstaller/. From that page
you should be able to download the latest JEMS Installer, which comes in the form of
an executable JAR file. If your OS’s window manager is configured correctly, you can
start the installer by double-clicking the JAR file. Otherwise, you may have to specify a
program to open it with or execute the JAR from the command line as follows (substi-
tuting your specific file version in for the X.X.X):

java –jar jems-installer-X.X.X.jar

Because we’re not sure exactly what the order of the screens will be in the JBoss AS 5
installer, we’ll just cover some basic things that should be available. First, you should
be able to specify an installation directory. Everything that gets installed is relative to
this directory; like in the binary installation, you don’t have to worry about configura-
tion files and libraries being placed in various places throughout your system. If you
install to a Windows machine, the installation path defaults to C:\Program Files (with
a space). If you’ve been programming in Java for a while, you’ve likely been burned
once or twice by libraries or code that had problems working with paths that include
spaces. We recommend, out of sheer paranoia, that you change this default to point to
a directory that has no spaces in its name.

http://labs.jboss.com/jbossas/downloads
http://labs.jboss.com/jbossas/downloads
http://labs.jboss.com/jbossweb/downloads/
http://labs.jboss.com/jemsinstaller/

12 CHAPTER 1 Vote for JBoss
You should also be able to pick the type of server configuration that you want to
install, as shown in figure 1.3. A configuration is a set of services that runs in your server.
You’ll notice that you have several configurations to choose from. After you select the
configuration, you’re given a list of services (called packs in the installer) with check
boxes next to them. You can use these check boxes to enable or disable individual ser-
vices. The installer should also allow you to specify a name for you configuration. We
talk about server configurations more in section 1.3.6.

 If you know what type of database you’re going to use, you should be able to con-
figure a data source. This allows you to enter all of your data source driver and con-
nection information and generate a –ds.xml file in your deploy directory. We discuss
data sources in chapter 3.

 Another thing you should be able to configure with the installer is deployment iso-
lation (also called call-by-value semantics). If you plan on loading different versions of
the same class files in different applications running within the application server,
then you might want to enable deployment isolation, which causes JBoss AS to keep

Note
At the time of writing this book, the installer was unavailable for JBoss AS 5 CR1. We
anticipate that the installer will be available with the general availability (GA) release
of JBoss AS 5. We assume, based on conversations with the folks at Red Hat, that
the installer won’t change much between JBoss AS 4 and JBoss AS 5. Also note that
JBoss AS 4 didn’t include the JBoss Web Server as a web container; it used Tomcat.
The difference is that the JBoss Web Server can be configured to use the JBoss Na-
tive library for your OS to make the server run faster. The JBoss AS 5 installer may
automatically detect your OS and install the appropriate JBoss Native library. Be-
cause the installer was not available, we don’t cover the installation of the JBoss Na-
tive library in this book.

Figure 1.3 Prepared
configurations available
through the installer

13Exploring the installation
individual class-loading caches for each application and search those caches first
before going to the global class-loading repository. This may cause a performance
decrease, so you may want to consider running different application server instances
for applications that need separate class loaders. If you don’t enable this feature, you
can still configure an individual application to have an isolated class loader. We take
an in-depth look at class loading and how to configure it in chapter 3 (section 3.2).

 Another thing you should be able to configure is security. The installer should let
you disable or secure various services such as the JMX management consoles and the
HTTP tunneling service. By default, most services and applications aren’t secured but
should be before going to production. We talk about this more in chapter 15.

 Whether you’ve used the binary distribution or the installer, all your JBoss AS files
are under one installation directory. If you look in this directory, you’ll see that the file
structure for the installation is straightforward. Let’s walk through it.

1.3 Exploring the installation
All files needed to start and use JBoss AS exist in a single direc-
tory structure. Understanding the directory structure makes
configuration and deployment easier. It also lays a foundation
for the rest of the book, so let’s explore it.

 Figure 1.4 shows the top-level JBoss AS directory structure.
 Throughout the rest of the book, we refer to directories

under this structure relative to the root directory. For exam-
ple, there’s a directory called default under the server direc-
tory in figure 1.4. The default directory has a directory called
deploy. We refer to that directory as server/default/deploy.

 Let’s delve into the contents of each of these directories.

1.3.1 The bin directory

The bin directory contains all the binaries and scripts that you need to start and stop
JBoss AS. Section 1.4 covers the details of how to start and stop the server. The scripts
are all available in both the Windows .bat format and the UNIX .sh format.

 This directory also contains other scripts used for various purposes. Table 1.2 lists
these other scripts and tells you where we talk about them.

Table 1.2 Scripts that are available in the bin directory

Script Description

twiddle A command line Java Management Extension (JMX) client.
We discuss this further in chapter 2 (section 2.3.2) and
chapter 3 (section 3.1.1)

probe A utility used for discovering JBoss AS clusters. We don’t
discuss this particular script elsewhere in the book.

Figure 1.4 The top-level
directories in the JBoss
AS directory structure

14 CHAPTER 1 Vote for JBoss
1.3.2 The client directory

The client directory contains libraries that you may need to communicate with JBoss
AS from a client application. These libraries aren’t loaded by the server directly but by
client programs running in a different JVM process than JBoss AS. These applications
are often called standalone clients or remote clients. Standalone clients include most cli-
ent applications (excluding web browsers). Some examples of remote clients include
standalone GUI clients (for example, Swing; Abstract Windows Toolkit, or AWT; and
Standard Widget Toolkit, or SWT), remote Web Services clients, remote web contain-
ers (like a standalone instance of Tomcat), and JMS clients. Remote clients typically
call EJBs, Web Services, or JMS queues and topics that are running on the server.

 The libraries in the server’s client directory are used by standalone clients to make
remote calls to JBoss AS possible. Many web applications never use the libraries in the
client directory. This is because the client libraries are generally for remote access to a
server. In many web applications, the web-tier code and the EJB code are often collo-
cated in the same server and share the same set of server libraries. Web browsers can
communicate with the web tier over HTTP and don’t need any of the client libraries
packaged with JBoss AS. The web tier can then communicate with the EJB server mak-
ing local calls because they’re both running in the same JVM instance.

 If you’re running a standalone client application, you have to determine which librar-
ies you need and make them available in your standalone client application’s CLASSPATH
environment variable. Some people choose to include all the Java Archive (JAR) files that
are in the client directory in their client class path, whether they need them all or not.
This often involves copying them all into the client application’s packaging structure or
pointing the class path to a JBoss AS installation on the machine with the client code.
Another way to do this is to use the jbossall-client.jar JAR file in the client directory. This
JAR file contains a META-INF/Manifest.mf file that contains class path references to all
the client JAR files, so you only have to include a single client JAR file in your class path.
But keep in mind that some IDEs don’t handle class path references well (or at all.)

 If you don’t want to use all the client libraries, you have to rely on your compiler to
determine what compile-time class dependencies you have and include the appropriate
JAR files from the client directory that have those class files. In addition to the compile-
time dependencies, you may also have some runtime dependencies. Those usually sur-
face in the form of a stack trace when you first start your application or while you’re test-
ing it. You also have to find the appropriate JAR files for the runtime dependencies and
add them to your client’s runtime class path. If you need some help locating the JAR file

wsconsume
wsprovide
wsrunclient
wstools

A series used for Web Services. We talk about these fur-
ther in chapter 9 (section 9.2.2).

Table 1.2 Scripts that are available in the bin directory (continued)

Script Description

15Exploring the installation
containing a specific class, chapter 3 (section 3.3.1) introduces a utility that can help
with this. Again, you might choose to package the libraries that you depend on in your
client application’s packaging structure or point your class path to a local JBoss AS
install on the machine running the client code.

1.3.3 The docs directory

Contrary to many people’s first assumptions, there are no user manuals, reference
guides, or javadocs for the application server in the docs directory. These have to be
downloaded from the jboss.com website as referenced at the end of this chapter. The
docs directory contains the following:

■ Document Type Definition (DTD) files and XML schemas for the configuration
files that JBoss AS uses

■ Configuration examples for various J2EE and JBoss AS services
■ Licenses for various libraries included in JBoss AS
■ Unit test results from the tests run against the server for the particular release

One popular directory under this structure is the docs/examples/jca directory. This
directory contains examples of different data source configuration files for different
databases. For example, if you’re using the MySQL database, you can copy the mysql-ds.
xml file from this directory into the server/xxx/deploy directory and modify the data
source configuration as described in chapter 3 (section 3.4.1). This will make a MySQL
data source available for access in JBoss AS’s Java Naming and Directory Interface
(JNDI) server.

1.3.4 The lib directory

The lib directory contains libraries that JBoss AS needs to start the core application
server. You shouldn’t need to put anything in this directory. If you have a library that
you want to share across the application server, you can put the library in the lib direc-
tory for your server configuration (under the server directory). We talk about this
directory further in section 1.3.7.

1.3.5 The server directory

No files exist directly in the server folder, but the directory has one or more subdirec-
tories. Each subdirectory contains what is called a server configuration. When you start
JBoss AS, you start a particular server configuration. Each configuration contains a set
of services and applications that are started when the server starts.

 Other application servers have a fixed set of services that run when you start them;
but with JBoss AS, you can configure your application server to be as big or as small
as you want it to be by adding or removing different services and applications from
your configuration.

 Each configuration directory has several subdirectories, the main ones being conf,
lib, and deploy. Let’s try to understand server configurations a little better, and then
we’ll explore the configuration structure in section 1.3.7.

16 CHAPTER 1 Vote for JBoss
1.3.6 Understanding server configurations

Many of the leading proprietary application servers come with a fixed set of services
that can’t be extended or reduced. JBoss AS, on the other hand, isn’t an application
server with a fixed set of services. JBoss AS is designed to be as big or as small as you
want it to be. At its core, JBoss AS is a microcontainer, the foundation architecture into
which you can plug only the services that your applications need, gaining the advan-
tage of running fewer components on the server. This reduces your server’s memory
footprint and allows it to start, and perhaps run, faster. Running fewer services also
means that you can have less concern for security vulnerabilities due to services that
bind to ports on your machine.

 Figure 1.5 shows you how the microcontainer runs on top of the JVM and how the
various application-server services plug in to the microcontainer. Application code
then gets deployed into the server and uses the various services.

 When you start JBoss AS, you’re always starting a server configuration. A server config-
uration is a directory structure under the application server’s server directory that
contains code, libraries, and configuration files for a set of services and applications
that run when the server starts.

 JBoss AS provides you with server configurations that you can use as starting points.
You want to pick a server configuration that’s closest to your needs and then add,
remove, and configure services as necessary. Some of the features that ship with the
standard installation are less used and more often removed. We talk about how to
remove these services in chapter 15 when we talk about slimming, or reducing the size
of, the server.

 The binary distribution of JBoss AS comes with three configurations: default, minimal,
and all. The root of each configuration is a subdirectory under the server directory in
the JBoss AS directory structure. As we discuss in section 1.4, when you start JBoss AS
using the start script, it starts the default configuration unless you specify otherwise.

 Table 1.3 summarizes the three configurations that are available with the binary
JBoss AS distribution.

Figure 1.5 Services running on top of the microcontainer

17Exploring the installation
The configurations that come with the binary distribution can—and should—be cus-
tomized. The installer creates a customized configuration. We discuss customizing the
configuration in section 1.3.8.

 Throughout the book we refer to files that could be in one or more server configu-
rations. If a file can only be found in a specific server configuration, we refer to that
configuration specifically. For example, the following file can only be found in the all
server configuration:

 server/all/deploy/cluster/cluster-jboss-beans.xml

If the file can be found in multiple server configurations, then we use an xxx in place
of the server configuration directory when we refer to it. For example, the following
file can be found in the default and the all configurations:

 server/xxx/deploy/hsqldb-ds.xml

Now that you understand what the configurations are, let’s take a look at what the
directory structure for a configuration looks like.

1.3.7 Exploring the configuration structure

There are four main directories under each configu-
ration: conf, deploy, deployers, and lib. Figure 1.6
shows the structure of the default configuration.

 In addition to the directories shown in figure 1.6,
the first time you start a configuration, JBoss AS cre-
ates several additional directories that contain tempo-
rary files and log files. These generated directories are
data, log, tmp, and work. Let’s walk through each of
the existing and generated directories to see what’s
inside them.
THE CONF DIRECTORY

Each configuration has a conf directory that holds files used for server-wide configura-
tion. Some of the important files that you may need to modify are listed in table 1.4.

 This directory is only scanned once, during the server’s boot sequence, so any
changes that you make here aren’t picked up until you restart the server.

Table 1.3 The three server configurations that ship with the binary distribution of JBoss AS

Configuration Description

default Includes all necessary services to bring up a fully compliant Java EE 5 server.
This configuration doesn’t include clustering services.

minimal Starts a minimal set of services including the microcontainer, some deployers,
and the JNDI service.

all Starts all services that ship with JBoss AS, including the clustering services.

Figure 1.6 The directory structure
of a server configuration before
starting the server for the first time.
After you start the server for the
first time, several temporary
directories are additionally created.

18 CHAPTER 1 Vote for JBoss
THE DEPLOY DIRECTORY

The deploy directory is where applications and services are deployed. This is where
you can deploy any application packages—for example, JAR, Web Archive (WAR), or
Enterprise Archive (EAR)—that you create. It also means that many services that are
running in your server configuration are deployed in this directory.

 Deploying applications into JBoss AS involves copying them into the deploy direc-
tory. JBoss AS detects deployments made to this directory while the server is run-
ning and dynamically deploys the applications to the server. We discuss this further in
chapter 3.
THE DEPLOYERS DIRECTORY

The deployers directory contains all the JBoss AS services that are used to recognize
and deploy different application and archive types. For example, the ejb3.deployer
directory contains libraries and configuration files necessary for starting the service
that deploys EJB3 applications that you deploy into the deploy directory. We talk about
deployers in chapter 3.
THE LIB DIRECTORY

The lib directory holds server libraries that are shared across all services and applica-
tions within a configuration. If you have a library that you want to share across multi-
ple applications within your server, this is a good place to put it. A common example
of a library that you’d want to share in this fashion is a database driver. If your library
is pertinent to a single application, then you might decide to package it with your
application archive.
THE GENERATED DIRECTORIES

JBoss AS generates several directories the first time you start a configuration. These
directories are as follows:

■ data—Used by services and applications that need to write to the file system for
storing temporary data. One of the main things that uses this directory is the
Hypersonic SQL Database (HSQL DB), which is the default data source that’s
configured in JBoss AS.

■ log—Holds three log files: boot.log, server.log, and audit.log. The boot.log file
is a temporary log file used to do logging from the time JBoss AS starts until
the logging service is enabled, giving you a view into errors that may occur

Table 1.4 Some of the main configuration files found in the server/xxx/conf directory

File Description

bootstrap.xml Defines core microcontainer services that start when the server first starts

jboss-service.xml Defines core JMX services that start when the server first starts

jboss-log4j.xml Configures logging, which we discuss further in chapter 2

login-config.xml Configures authentication and authorization modules for security, which we
describe in chapter 4

standardjboss.xml Used to configure the various EJB containers, which we talk about in chapter 7

19Exploring the installation
before the logging service has had a chance to start. The server.log file is the
log file that log4j (the main logging service of JBoss AS) is configured to write
to. We discuss logging and log4j more in chapter 2. The audit.log file can be
found under this directory’s security subdirectory. The security service logs all
security-related log files to this file to make it easier to audit security error.

■ tmp—Stores temporary data by various services.
■ work—Used by JBoss Web Server (the web container that comes prepackaged

with JBoss AS) to store compiled JSP files and other temporary data.

1.3.8 Customizing your configuration

If you use the installer, you inherently create your own cus-
tomized configuration, albeit one that you’ll likely config-
ure further after the installation process is complete. As we
discussed earlier, while you’re going through the installer,
you can select a name for your customized configuration.
We recommend changing the name to something other
than default to communicate the fact that the configuration
that you’ve created isn’t the default server configuration.

 If you’ve manually installed JBoss AS using the binary distribution, you can create
your own configuration by making a copy of one of the prepackaged configuration
directories under the server directory. For example, you could copy the default directory
(and all of its contents recursively) to a directory called custom, as shown in figure 1.7.

 This copy can then be modified by changing configuration files or adding and
removing applications and services that you may or may not need. Using one of the
prepackaged configurations is the quickest way to get up and running, but they have
settings that may not be desired in a production environment. For example, a secured
management console might slow you down in a development environment, so security
is disabled by default; but, you should secure or disable the management consoles
when you go into production.

 A version control system is a great tool for managing, backing up, and replicating
your configuration because it prevents you from having to manually install and custom-
ize a configuration in order to run an application in a new environment. Some teams
choose to version-control the entire JBoss AS distribution rather than only the configu-
ration directory. This isn’t a bad idea because you can ensure that any new machine that
you set up has exactly the same environment as that in which you performed your devel-
opment and testing. Having the entire JBoss AS distribution in version control also lets
you go back to old labels that may have run on old versions of JBoss AS.

 Many teams keep parallel configuration structures for different environments. You
can also create variables for parameters in your configuration that JBoss AS will fill in
with system properties provided on the command line or in properties files. We talk
about this more in chapter 2.

 Now that you have a good background on the contents of the JBoss AS installation,
let’s learn how you can start and stop the application server.

Figure 1.7 To create
a custom configuration,
start by copying one of the
prepackaged configurations
under the server directory.

20 CHAPTER 1 Vote for JBoss
1.4 Starting and stopping the server
After installing JBoss AS, you can open a console window on your computer and navi-
gate to the bin directory to run the scripts that allow you to start and stop your server.
During development, you’ll likely start and stop the server from a console window
periodically as you make configuration changes. Running in the console window
allows you to see logging information as the server starts and runs.

 After your application is in a production environment, you don’t want the server to
go down when you accidentally close a console window or log off a user. In this case,
you want to run JBoss AS as a process that runs in the background on your operating
platform. In a Windows environment, this is known as running the server as a Windows
Service. In UNIX, this is known as running it as a daemon. We show you how to do this in
chapter 15.

 Let’s discuss how to start the application server.

1.4.1 Starting the server

To start JBoss AS using the default configuration, open a command window and navi-
gate to the bin directory, and then issue the following command:

./run.sh
run.bat

After running the start script, the server logs quite a few messages to the console window.
The tail end of the console output should look similar to what is shown in listing 1.1.

16:59:55,102 INFO [TomcatDeployment] deploy, ctxPath=/, vfsUrl=ROOT.war
16:59:56,258 INFO [Http11Protocol] Starting Coyote HTTP/1.1 on http-

127.0.0.1-8080
16:59:56,414 INFO [AjpProtocol] Starting Coyote AJP/1.3 on ajp-127.0.0.1-

8009
16:59:56,430 INFO [ServerImpl] JBoss (Microcontainer) [5.0.0.CR1 (build:

SVNTag=JBoss_5_0_0_CR1 date=200806301254)] Started in 1m:57s:188ms

The last line of the output indicates that the server has started and tells you how
long it took to start. This doesn’t necessarily mean that every application and service
was started successfully. Scrolling back through the output might yield a stack trace
or some warn-level or error-level log messages. At this point, with a standard install,
there should be no error messages or stack traces when you start JBoss AS. As you
can see, it starts relatively quickly when there are no user applications deployed to
the server.

NOTE The startup time on JBoss 5.0.0 CR1 was about 54 seconds on a dual-core
Intel machine with 2 gigs of RAM that was running Windows. The startup
time for JBoss 4.2 was less than 20 seconds. We anticipate that the startup
time will improve significantly with either the GA version of JBoss AS 5 or
one of the first minor releases that comes out shortly after.

Listing 1.1 Output from starting the default configuration

On UNIX
On Windows

21Starting and stopping the server
When you try to bring JBoss AS up in a console window, we highly recommend that
you bring up the console window first, navigate to the bin directory, and then execute
the start script from within a console window. We don’t recommend starting any of the
scripts in the bin directory by double-clicking them from a GUI.

 There are two primary reasons for avoiding this. First, during development, it’s
useful to see log messages and standard output in a console window. Double-clicking
the script may cause it to run without a console window (depending on the way your
environment is set up). This means you’d have to pull up the log file in a separate con-
sole window or text editor and make sure you have a way to refresh the log file as it’s
appended to—a popular UNIX command to use is tail. Many text editors also have
auto-refresh features that detect if the file has been updated and automatically scroll
to the bottom of the file.

 The second disadvantage to double-clicking the start script from a GUI is that, even
if a console window does come up in your environment, terminating the server pro-
cess may cause the console window to close immediately. This prevents you from
scrolling through the console window history to read logging and console output. If
you bring up a console window and start the server by manually executing the script,
terminating the process will merely take you back to the command prompt, allowing
you to still scroll through the history.

 Another thing that you may want to do is increase the scroll buffer (sometimes called
the screen buffer) on your console window. This tells the console window how much his-
tory to keep as the screen fills up and starts scrolling. Sometimes error messages are
accompanied by long stack traces. If your buffer size is inadequate, the beginning
of your stack trace may scroll out of your buffer, causing much frustration and hair
pulling. If you can afford the memory, set the limit to be infinite or the maximum pos-
sible (9999 lines on Windows). But don’t panic if important log information scrolls off
the screen because you can always pull up the server log file to look back at your out-
put. The logs are in the log directory of the server configuration, which we discussed
in section 1.3.7. We talk about how to configure logging in chapter 2.

 In this section, we’ve explored how to start the default configuration. If you create
a configuration using a different name or want to run a different prepackaged config-
uration, you’ll have to specify the configuration name when you run the start script.
Let’s take a look.

1.4.2 Starting an alternative configuration

To start JBoss AS with a configuration other than the default configuration, you have
to provide the -c parameter to the start script. For example, you start the all configu-
ration as follows:

./run.sh -c all
run.bat –c all

This causes JBoss AS to read all the configuration files it needs from the server’s server/
all directory. It writes any temporary files to directories under the configuration as well.

On UNIX
On Windows

22 CHAPTER 1 Vote for JBoss
TIP Many people initially assume that they can bring up multiple instances
of JBoss AS on the same machine by starting two different server config-
urations in different console windows. Although you do have to start dif-
ferent server configurations, you also have to worry about what OS ports
the different services bind to and make sure that they don’t conflict. We
talk about how to bring up multiple nodes on the same machine in
chapter 15.

Now that you’ve seen how to start both the default configuration and an alternative
configuration, let’s talk about how to verify that the server is running properly.

1.4.3 Verifying that the server is running

The last line of the output after running the start script gives you an indication that the
server has started. Another way to see the application server in action is to navigate to
http://localhost:8080/. Figure 1.8 shows you this page, which contains links to useful
online resources and some of the prepackaged applications that ship with JBoss AS.

 The JBoss Online Resources section gives you a list of useful links from the JBoss AS
website. If you have questions about JBoss AS, these are generally good places to
look—but only after looking through your copy of JBoss in Action, of course.

When JBoss AS starts up, it binds to localhost by default. Older versions of
JBoss would bind to the address 0.0.0.0. Because of this change, you can’t
access JBoss AS locally by using your machine name. For example, to ver-
ify the server is running, you can’t go to http://myhostname:8080; you
have to go to http://localhost:8080 or http://127.0.0.1:8080. You can
also bind your server to a specific IP address when it starts up. See chap-
ter 15 for further discussion on binding.

Figure 1.8 You can see
the Welcome page from
a web browser after the
server starts.

WARNING

23Deploying to the server
The JBoss Management section gives you links to different web-based management
applications that come prepackaged with JBoss AS. The Tomcat Status web application
gives you status information on the JBoss Web Server, which is built on top of Tomcat.
We talk about the JBoss Web Server in chapter 5. The JMX Console gives you a view
into the services and applications running on JBoss AS. If you click the JMX Console
link, you can try it out. We discuss the JMX Console application in detail in chapter 2.

 Now you know how to start the server and verify that it’s running. Let’s learn how
to shut it down.

1.4.4 Stopping the server

Shutting down JBoss AS is as easy as starting it. The shutdown scripts are also in the bin
directory. To shutdown JBoss AS, you can run the following command:

> ./shutdown.sh -S
> shutdown.bat -S

If you run JBoss AS in a console window, you have to bring up another console window
to execute the shutdown script. If you don’t run as a service, you can easily kill the pro-
cess from the command window by issuing a termination command (Ctrl-C in most
OSs). When you do this, JBoss AS executes the same shutdown thread that gets exe-
cuted by running the shutdown script.

1.5 Deploying to the server
Now you know how to install, start, and stop JBoss AS. But what good is an application
server with no applications? After you’ve written an application, you have to know how
to put it into the application server. This is called deploying an application to the appli-
cation server. Deploying and undeploying applica-
tions in JBoss AS can be done entirely through
filesystem operations. To deploy an application
you copy it (or move it) into the deploy directory of
the server configuration in which you want the
application to run. To undeploy an application,
you remove it from the deploy directory. Figure 1.9
shows you where the deploy directory is relative to
the server’s default configuration.

NOTE Unfortunately, one thing that JBoss AS truly lacks is a good administrative
console. Most things in JBoss AS are accomplished through filesystem or
JMX operations. For example, configuration changes are made by chang-
ing flat text files, and you deploy and undeploy through filesystem copy
and delete operations or through JMX operations. This can be disheart-
ening for those who lean on GUIs to guide them through these things.
Many JBoss AS proponents argue that you don’t need the GUI because
many activities can be automated by using scripts or build tools that hook
into JBoss AS using filesystem or JMX operations.

On UNIX
On Windows

Figure 1.9 You can deploy
an application to the server by
copying it into the deploy directory,
and you can remove an application by
deleting it from the deploy directory.

24 CHAPTER 1 Vote for JBoss
You can deploy applications to JBoss AS even while it’s running; the application server
dynamically picks up deployments. In chapter 3, we explore ways to configure the fre-
quency and location at which deployments are scanned.

 If you don’t have a good grasp on how deployment works, don’t worry; chapter 3 is
entirely devoted to deployment. At this point we want to get you up and running, so
we’re more interested in how to deploy an application.

 Let’s walk through a step-by-step example in which we’ll build and deploy a simple
Hello World! web application into JBoss AS. After deploying the application, we’ll ver-
ify that the deployment worked by accessing the application through a web browser.
The first thing you need to do is build the application.

1.5.1 Creating the application

The Hello World! application is so simple
that it requires only two files: a servlet class
and a web configuration file. First, create a
directory called helloWorldBuild where
you’ll build and stage the application. Make
this directory structure look like figure 1.10.

 Listing 1.2 shows you the source for the
HelloWorldServlet.java class. Create this
class, and put it in the directory structure,
as shown in figure 1.10.

package com.manning.jbia.intro;
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;
@SuppressWarnings("serial")
public class HelloWorldServlet extends HttpServlet
{
 @Override
 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 PrintWriter out = response.getWriter();
 out.println("<html><body>Hello World!</body></html>");
 out.close();
 }
}

This file merely prints out the words Hello World! in the body of an HTML page that’s
sent to the user in response to any call to the servlet. The other file that you need to
create is the standard deployment descriptor, web.xml, a configuration file that JBoss

Listing 1.2 The source code for the HelloWorldServlet.java servlet

Figure 1.10 The contents of the directory
structure you’ll use to build the Hello World!
application.

25Deploying to the server
AS uses when deploying the web application. Listing 1.3 shows you what the web.xml
file looks like for our application.

<web-app version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <servlet>
 <servlet-name>Hello Servlet</servlet-name>
 <servlet-class>
 com.manning.jbia.intro.HelloWorldServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Hello Servlet</servlet-name>
 <url-pattern>/sayhello</url-pattern>
 </servlet-mapping>
</web-app>

Again, create this file, and put it in the directory structure, as shown in figure 1.10.
After all the files are in place, pull up a console window, and go to the helloWorldBuild
directory. In that directory, execute the following command to build the servlet class
(use backslashes if you’re running Windows):

javac -classpath [path-to-jboss]/server/default/lib/servlet-api.jar -d

➥helloapp.war/WEB-INF/classes src/com/manning/jbia/intro/*

Make sure that you replace [path-to-jboss] with the path to your JBoss AS installa-
tion. After this command runs, the WEB-INF/classes directory should contain the com-
piled HelloWorldServlet.class file (under its appropriate package).

 At this point, the application is built, and you can deploy it into the application
server. Let’s see how.

1.5.2 Deploying the application

Before deploying the application, pull up another
console window and start JBoss AS, as described in
section 1.4.1. After the server has started, place the
console window so that it’s visible in the background
of your screen because you’ll want to see what hap-
pens in the server when the application is deployed.

 The helloapp.war directory is an exploded web
application package structure. We talk about archived
and exploded packaging in chapter 3. You can move
this entire directory structure into the deploy directory.
You can do this manually through your OS’s GUI by
dragging and dropping the entire directory structure
as shown in figure 1.11.

Listing 1.3 The code for the web.xml file

Figure 1.11 You can deploy the
sample application by moving the
helloapp.war directory into the
deploy directory under the default
server configuration in JBoss AS.

26 CHAPTER 1 Vote for JBoss
Remember to keep the JBoss AS server console visible as you do this so that you can
see the output when the deployment occurs.

TIP When you copy an application into the server as an exploded directory
structure, it’s possible for the deployment descriptor to get copied before
all the application resources are copied. This can be bad because JBoss AS
triggers deployments based on detection of or updates to the deployment
descriptor; so, the server may try to deploy an incomplete application. On
some OSs, you can avoid this by doing a move rather than a copy because
a move is treated as an atomic operation. That means that none of the files
is made available until all of them are available. If the server does try to
deploy a partially-copied application, then you can redeploy it by updating
the appropriate deployment descriptor as we discuss in chapter 3.

You should see some messages in the server console that indicate that JBoss AS auto-
matically detected that the application was put into the deploy directory and deployed
it. The console should displayed something like the following:

08:36:07,687 INFO [TomcatDeployment] deploy, ctxPath=/helloapp,
vfsUrl=helloapp.war

Now pull up a web browser and navigate to the following URL:
 http://localhost:8080/helloapp/sayhello

The page that pulls up should have the output shown in figure 1.12.

Now that you know how to deploy the sample application into the application, let’s try
to undeploy the application.

1.5.3 Undeploying the application

Undeploying an application is as simple as deploying it. We delete the archive file or
exploded directory from the deploy directory. If you delete the helloapp.war file from
the server/default/deploy directory while the server is still running, you’ll see the fol-
lowing console output:

13:27:40,750 INFO [TomcatDeployer] undeploy, ctxPath=/helloapp,
vfsUrl=helloapp.war

This output tells us that JBoss removed the helloapp.war application from the server.

Figure 1.12 After deploying
the sample web application,
you can navigate to this page
to make sure the application
is running properly.

27References
1.6 Summary
This chapter focused on getting you up and running quickly with JBoss AS in a devel-
opment environment. We started off by giving you some background on JBoss,
explaining what it is, what other products are in JEMS, and looking at why the JBoss
products are so popular.

 You then learned how to install JBoss. We started by discussing what you needed to
obtain before installation, and then explained how to do an installation using both
the standard binary distribution and the installer. We compared the tradeoffs between
these two installation processes and gave recommendations on the various installation
options in the installer.

 After installing JBoss, we gave you a tour of the JBoss installation by walking you
through the different directories, stopping to examine key files in each. We started at
the top level and then dove into the various directories in the server configurations.
We explained why you’d want to create your own custom server configuration and
walked you through how to do it.

 After examining the server structure, we showed how to start and stop JBoss from
the command line. We demonstrated how simple it is to start the default server config-
uration, and then we showed how to start an alternate configuration. Before explain-
ing how to stop the server, we discusses a few things you can do to verify that the server
started properly. In chapter 15, we build on this section to show how you can start
JBoss as a system service.

 Finally, we gave an overview on how to deploy applications into the server by walk-
ing you through how to build a simple Hello World! web application and put it in the
server configuration’s deploy directory. After showing how to test the application, we
demonstrated how removing an application involved removing the file from the
deploy directory.

 Now that you’ve learned about the structure of the application server, how to start
and stop it, and how to deploy and undeploy applications, let’s learn more about how
to manage and configure the server.

1.7 References
The JBoss AS documentation—http://labs.jboss.com/jbossas/docs
The BZResearch website —http://www.bzresearch.com
“Where Is Open Source in the App Server Surveys?”—http://java.sys-con.com/read/45075.htm
Interview with Marc Fleury on the history of JBoss—http://news.com.com/2008-1082-994819.html
Adding Apache Portable Runtime to a Web Server by installing the JBoss Native library—http://

www.jboss.org/community/docs/DOC-9912
Running JBoss as a service on Windows using the JBoss Native library—http://www.jboss.org/

community/docs/DOC-11932

http://labs.jboss.com/jbossas/docs
http://www.bzresearch.com
http://java.sys-con.com/read/45075.htm
http://news.com.com/2008-1082-994819.html
http://www.jboss.org/community/docs/DOC-9912
http://www.jboss.org/community/docs/DOC-9912
http://www.jboss.org/community/docs/DOC-11932
http://www.jboss.org/community/docs/DOC-11932

Managing the
 JBoss Application Server
The journey of a thousand miles starts with a single step; this adage from the Tao Te
Ching, the book central to the Taoist school of Chinese philosophy, describes this
chapter fairly well. JBoss in Action is all about managing the JBoss Application Server,
and in this chapter, you take your first steps in such management, continuing your
journey throughout the rest of the book.

 JBoss AS provides a good out-of-the-box experience for application developers.
You can download the application server, install it, run it, and even deploy applica-
tions to it, usually without having to do any configuration changes. It just runs.

 After a while, you might want to do things like change the ports used, add new
services or remove unwanted services, or change various configuration options; to
do this, you need to know where to make such changes. Knowing how the applica-
tion server is architected will clarify why the configuration is spread out among

This chapter covers
■ Examining the JBoss AS architecture
■ Configuring JBoss AS
■ Examining the administration tools
■ Exploring various MBeans
28

29Examining the JBoss Application Server architecture
dozens of files instead of centralized in one location. Therefore, we start with a
description of how JBoss AS is architected, and from there look at some files that gov-
ern the server configuration.

2.1 Examining the JBoss Application Server architecture
JBoss AS isn’t a monolithic application that performs all the functions required of a
Java Platform, Enterprise Edition (Java EE)-compliant server. Nor is it a conglomera-
tion of components that provide those functions. Instead, it’s a large collection of
independent and interdependent components, each of which focuses on a specific
area of Java EE functionality.

 Earlier versions of JBoss AS were built around a Java Management Extension (JMX)
kernel. This kernel provided a basic set of functionality, and all services supplied with
the application server were written as Managed Beans (MBeans) that plugged into the
JMX kernel. This loosely connected architecture enabled new services to be easily
added. In addition, unwanted services could be easily removed. The end result was a
customized server that provided only the services you needed, resulting in an efficient
use of computer memory and hard drive space.

 With the 4.0.3 release, JBoss AS started migrating to a microcontainer architecture.
The microcontainer enables new services to be written using Plain Old Java Objects
(POJOs) rather than as MBeans. The 5.0 release of JBoss AS takes a major step on
the migration path, with the microcontainer being a visible component of
the architecture.

NOTE Martin Fowler describes the origin of the term POJO in this way: “The
term was coined while Rebecca Parsons, Josh MacKenzie and I were pre-
paring for a talk at a conference in September 2000. In the talk we were
pointing out the many benefits of encoding business logic into regular
Java objects rather than using Entity Beans. We wondered why people
were so against using regular objects in their systems and concluded that
it was because simple objects lacked a fancy name. So we gave them one,
and it’s caught on very nicely.”

Because the 5.0 release uses the microcontainer-based architecture, we describe that
first and, after that, look into JMX. You’ll find that JMX still plays a significant role in
the application server.

2.1.1 Understanding the microcontainer

The JBoss Microcontainer is a dependency injection framework similar to the Spring
Framework. With it you can do the following tasks (among others):

■ Specify objects to be instantiated
■ Provide constructor parameters when instantiating objects
■ List property values to set (such as object A has a property which is a reference

to object B)
■ Specify dependencies among objects (such as object X must be created before

object Y)

30 CHAPTER 2 Managing the JBoss Application Server
This new microcontainer architecture has several benefits over the old JMX kernel
architecture. First, it’s much lighter because it doesn’t have to support JMX, allowing
you to build even smaller minimal configurations. Second, services built on top of the
microcontainer can be deployed standalone, within another application server such
as BEA’s WebLogic Server, or even within a web
server such as Tomcat. For example, the EJB3
container could be deployed on the Tomcat
web server because the EJB3 container is based on
the microcontainer.

 Because not all services have been ported to the
microcontainer, the JMX kernel still plays a major
role in the architecture, as illustrated in figure 2.1.
The JMX kernel is one of the primary POJOs
defined to, and created by, the microcontainer.

 Eventually, in some future release, JBoss AS will
be entirely microcontainer based and have an
architecture similar to that shown in figure 2.2.
JMX is transitioning from being the underlying
architecture of the application server to one of the
services deployed to the microcontainer to man-
age and monitor components.
UNDERSTANDING THE BEANS CONFIGURATION FILE

You can use bean configuration files in the server/xxx/conf directory to configure
the microcontainer. Most bean configuration files follow the pattern *-jboss-
beans.xml, but the bean primary configuration files found in the server/xxx/conf
directory don’t follow this pattern. An excerpt from the server/xxx/conf/profile.xml
file, which highlights many of the bean definition capabilities of the microcontainer,
appears in listing 2.1.

<deployment xmlns="urn:jboss:bean-deployer:2.0">
 ...
 <bean name="ProfileService"
 class="org.jboss.system.server.profileservice.

➥ basic.MetaDataAwareProfileService">
 <constructor>
 <parameter>...</parameter>
 </constructor>
 <property name="profileRoot">

➥ ${jboss.server.home.dir}</property>
 ...
 </bean>
...
 <bean name="VFSDeployerScanner" class="...">
 <property name="profileService"><inject bean="ProfileService"/>
 </property>

Listing 2.1 Excerpt from profile.xml file

B
C

D

E

F

microcontainer

de
pl
oy
er
s

JMX kernel

JMS

E
JB
3 JNDI

A
O
P

microcontainer

deployers JMX AOPEJB3 JMS JNDI

Figure 2.1 A simplified view of the
JBoss AS 5.0 architecture, showing
several services that rely only on the
microcontainer and other services that
still rely on JMX

Figure 2.2 A simplified view of the
eventual JBoss AS architecture,
showing how all services will rely
entirely on the microcontainer

31Examining the JBoss Application Server architecture
 <property name="URIList">
 <list elementClass="java.net.URI">
 <value>${jboss.server.home.url}deployers/</value>
 </list>
 </property>
 </bean>
 ...
</deployment>

The profile.xml configuration file declares multiple beans using the <bean> tag. Each
bean has a name B and a class that implements the bean C. You can use constructor
injection to specify parameters to pass to the constructor when the bean is created D,
setter injection to specify initial values for bean properties, or both for the standard
data types E and for collections G. In addition, you can specify that one bean refer-
ences another using the <inject> tag to inject a bean as either an initial property
value F or as a parameter to a constructor (not shown).
EXAMINING THE MICROCONTAINER CONFIGURATION FILE

The primary beans configuration file for the application server is located at server/
xxx/conf/bootstrap.xml. This file includes other bean configuration files, which in
turn define a series of POJOs or JavaBeans that provide services such as the following:

■ The Profile Service —Provides basic profiling information on the loading of ser-
vices. For example, the Profile Service provides the “Started in 99s.999m” mes-
sage in the output log when the application server has fully started.

■ The JMX Kernel —Implements the JMX kernel.
■ Several beans related to the deployers —Include the Main Deployer, which manages

all the deployers.

2.1.2 Understanding JMX

The JMX specification, defined by Java Specification Request 3 (JSR 3), concerns man-
aged JavaBeans, or MBeans. To create an MBean, all you need to do is define an inter-
face and a class that implements the interface (the specification states the interface
must be named XxxMBean and the class named Xxx, where Xxx is any name). Once
an instance is created, it can be registered by name with the MBean server.

 Once registered, any JMX client can access the MBean by name via the MBean
server. In addition, the JMX client can request information about the MBean and can
make requests to the MBean, but only
through the MBean server. Note that the cli-
ent never accesses the MBean. This interac-
tion is illustrated in figure 2.3.

 In the application server, the service
deployer instantiates the MBeans, based on
the contents of the jboss-service.xml file
that accompanies the service or the various
*-service.xml files that appear in the deploy

G

Client JMX
server MBean

1) Makes request
passing MBean name

2) Looks up MBean
and makes request

3) Returns response
to client

Figure 2.3 Accessing an MBean via
the JMX server

32 CHAPTER 2 Managing the JBoss Application Server
directory, and registers the MBeans with the MBean server provided by the application
server. Other applications, including other services, can then access the services of
those MBeans via the MBean server. This mechanism provides for loosely coupled ser-
vices that can be easily replaced.
UNDERSTANDING MBEAN NAMES

We mentioned that MBeans get registered by name and that clients can look them up
by name, but we’ve not yet defined what an MBean name is. It’s not a simple text
string. Instead, it’s a multipart name consisting of the following:

■ A domain (similar to a package name for a Java class)
■ One or more key properties (each of which is a key value pair)

When expressed as a string, the name starts with the domain, followed by a colon, fol-
lowed by the key properties separated by commas. Figure 2.4 illustrates an example
MBean name written as a string.

Note that the ordering of the key properties is irrelevant. The following text strings,
when used as MBean names, denote the same MBean:

jboss.jca:service=ManagedConnectionPool,name=DefaultDS
jboss.jca:name=DefaultDS,service=ManagedConnectionPool

Now that you have some background about MBeans, let’s look at the primary descrip-
tor file used by JBoss AS to define MBeans and, indirectly, to declare services.
EXAMINING THE JMX KERNEL DESCRIPTOR FILE

The server/xxx/conf/jboss-service.xml file is the primary descriptor file used to
declare MBeans to the JMX kernel. This file, and its layout, is specific to JBoss AS. You
can use a different descriptor file by setting the jboss.server.root.deployment.
filename system property to the filename and setting the jboss.server.config.url
system property to the directory containing that file. Note that, if you do the latter, all
configuration files that typically appear in the server/xxx/conf directory must appear
in the directory specified by jboss.server.config.url.

 The jboss-service.xml file defines a number of MBeans, including the following:

■ The logging service.
■ The thread pool—Used to supply threads to run the various services. You can eas-

ily tell which services use the thread pool by noting the ThreadPool property on
the other MBeans.

■ The Java Naming and Directory Interface (JNDI) .
■ Various MBeans for managing security—Include Java Authentication and Authoriza-

tion Service (JAAS).

jboss.jca:service=ManagedConnectionPool,name=DefaultDS

domain key propertykey property

Figure 2.4
Deciphering an MBean name

33Configuring the application server
■ Various MBeans related to accessing JMX services.
■ Various MBeans related to the remoting service—Enable remote access to local ser-

vices. These services play a role in almost all remote access to the application
server, including messaging and EJB access.

2.2 Configuring the application server
Besides the jboss-service.xml file covered in the previous section, services deployed to
the application server can embed a META-INF/jboss-service.xml into their archives or
a separate *-service.xml file that declares the MBeans for that service. For example,
the Universally Unique ID (UUID) generator defines its MBeans in the server/xxx/
deploy/uuid-key-generator.sar/META-INF/jboss-service.xml file. As another example,
the various *-service.xml files found in the server/xxx/deploy/messaging directory
define the MBeans used by the messaging service.

 These configuration files aren’t the only ones used to configure services. Each ser-
vice can define its own configuration file(s), beyond the XML files used to define the
MBeans for the service. For example, the server/xxx/conf directory contains many
configuration files, which are described in table 2.1.

Table 2.1 Files in the conf directory

File Description

bootstrap.xml Used by the microcontainer to load the initial set of POJOs. This file is a
master file that includes the following files: aop.xml, classloader.xml,
deployers.xml, jmx.xml, and profile.xml.

jacorb.properties Used to configure the Java Object Request Broker (JacORB) service,
which is used when clustering application servers.

jax-ws-catalog.xml Used to map XML metadata names to local metadata descriptor
files—both Document Type Definition (DTD) and XML Schema Definition
Language (XSD)—in the docs/dtd and docs/schema directories. This is a
required catalog to support Java API for XML-based Web Services (JAX-WS).

jbossjta-properties.xml Used to configure the Java Transaction API (JTA) service.

jboss-log4j.xml Used by the logging service to define the logging settings.

jboss-minimal.xml A variation of the jboss-service.xml file configured for a minimal applica-
tion server configuration. This file is never used.

jboss-service.xml Used by the JMX kernel.

jndi.properties Used by the JNDI service to define default properties.

login-config.xml Used by the security service to define login modules.

standardjboss.xml Used by the EJB service to define configuration settings.

standardjbosscmp-jdbc.cmp Used by the EJB service to define type mappings for various databases for
use with Container Managed Persistence (CMP) for EJB 2.x entity beans.

34 CHAPTER 2 Managing the JBoss Application Server
We cover many of the configuration files in other chapters in this book, but there are
a few that we don’t cover later that are worth looking at here. The topics we examine
include configuring logging, configuring directory locations using system properties,
and defining additional system properties.

2.2.1 Configuring logging

The application server uses log4j, an open source logging framework, to do logging.
The log4j configuration file is located at server/xxx/conf/jboss-log4j.xml.

 By default, two appenders are defined: one for the console, which is set to log
entries identified as level info or higher priority, such as warning and error entries;
and one for the server/xxx/log/server.log file, which is set to log all levels. In addi-
tion, various category settings define the trace level for various packages to limit the
amount of logging accomplished.

 Some of the logging configuration changes that you might want to make include
the following:

■ Specifying a rolling log file
■ Limiting the amount of logging produced
■ Adding logging for your application
■ Defining a new log file

Each of these topics is covered in the following text.
ROLLING THE SERVER LOG FILE

The server.log file is created new each time the server is launched, and grows until the
server is stopped or until midnight. This behavior, although appropriate for a develop-
ment environment, isn’t optimal for a production environment. In production, you
should specify a rolling log file that creates a new log file when it reaches a certain size.
Listing 2.2 shows how you can change the appender for the server.log file to create, at
most, 20 log files of 10 megabytes (MB) in size each. All the changes are highlighted.

<log4j:...>
 <appender name="FILE"
class="org.jboss.logging.appender.RollingFileAppender">
 <errorHandler .../>
 <param name="File"
 value="${jboss.server.log.dir}/server.log"/>
 <param name="Append" value="true"/>
 <param name="MaxFileSize" value="10MB"/>
 <param name="MaxBackupIndex" value="20"/>
 <layout .../>
 </appender>
 ...
</log4j>

We didn’t change the errorHandler or layout settings from the default. By the way, the
various appenders defined in the org.jboss.logging.appender package are simple

Listing 2.2 Defining a rolling log appender

Uses rolling
appender

B Location of
log file

Keeps only last
20 log files

Limits log
file size to
10 MB

Appends to
existing file
on startup

35Configuring the application server
subclasses of the log4j appenders defined in the org.apache.log4j package that auto-
matically create the server/xxx/log directory.

 The system property jboss.server.log.dir defines the location of the log file B.
LIMITING LOGGING

If the server log file grows too rapidly, or you want to suppress messages displayed on
the console log, you can change the logging options to reduce the amount of logging.

 As an example, assume that your application uses Hibernate. You might find that
the log file quickly grows in size, reaching way over 100 MB within minutes. Looking at
the log file, you see many log entries that look like those in listing 2.3.

2007-... DEBUG [org.hibernate.transaction.JTATransaction] commit...
2007-... DEBUG [org.hibernate.jdbc.JDBCContext] successfully ...
2007-... DEBUG [org.hibernate.impl.SessionImpl] opened session ...
2007-... DEBUG [org.hibernate.transaction.JTATransaction] Looking...

You can easily prevent the log from containing these entries by editing the jboss-
log4j.xml file. As shown in listing 2.4, you can prevent the log from containing these
DEBUG entries by adding a new category entry to the jboss-log4j.xml file and setting the
priority to INFO.

<log4j:configuration ...>
 . . .
 <category name="org.hibernate">
 <priority value="INFO"/>
 </category>
 . . .
</log4j:configuration

The category name B comes from the name between brackets in the log file. Note
that, in the log entries presented, this name begins with org.hibernate. If you,
instead, wanted to remove the transaction-related logging output, use a category
name of org.hibernate.transaction.

 You can add similar category entries to remove other output from the log or to
reduce the level of logging performed by one of the services. For example, to set log-
ging from JBoss Messaging to the warning level or higher, add the following categories
to the jboss-log4j.xml file, as shown in listing 2.5.

<log4j:...>
 ...
 <category name="org.jboss.messaging">
 <priority value="WARN"/>
 </category>
 <category name="org.jboss.jms">

Listing 2.3 Too much logging

Listing 2.4 Shrinking the log file

Listing 2.5 Limiting messaging logging to warning or higher

Identifies
package to log

B

Suppresses
DEBUG log
entries

36 CHAPTER 2 Managing the JBoss Application Server
 <priority value="WARN"/>
 </category>
</log4j>

Note that JBoss Messaging uses two primary packages, meaning we had to declare two
categories. How did we know this? We looked at the class names for the entries that
appeared in the server log. Although the server log shows the full package and class
name, the console log shows only the class name; therefore, you should always use the
names in the server log to determine the logging category names.

 Finally, you can limit what logging information shows up in a log file or on the con-
sole by changing the value of the Threshold parameter for an appender. For example,
you can limit the console log output to errors by changing the jboss-log4j.xml file as
shown in listing 2.6.

<log4j:...>
 ...
 <appender name="CONSOLE" ...>
 ...
 <param name="Threshold" value="ERROR"/>
 </appender>
 ...
</log4j>

Conversely, if you want all logging information to show up on the console, you could
change the level to TRACE, or even remove the Threshold parameter entirely.
LOGGING YOUR APPLICATION

If you use log4j or Apache Jakarta Commons Logging within your application, you can
log your application by adding category entries to the jboss-log4j.xml file. For exam-
ple, if your application uses the package name org.jbia, you can log the classes in
that package and its subpackages by adding a category to the jboss-log4j.xml file, as
shown in listing 2.7.

<log4j:...>
 ...
 <category name="org.jbia">
 <priority value="DEBUG"/>
 </category>
</log4j>

The debug—and higher—messages show up in the server.log file, and the info—and
higher—messages show up in the console log.
DEFINING A SPECIFIC LOG

In one way, the server.log file is great because all the log information is in a single
location. But the downside is that, at times, searching for data within it is akin to find-
ing a needle in a haystack. There are times when you’d like to log specific messages

Listing 2.6 Limiting console logging to the error level

Listing 2.7 Defining logging for your application

37Configuring the application server
to a particular file. For example, suppose you want to log all info messages from all
classes in the org.jbia package to a file named jbia.log. Listing 2.8 shows the entries
you need to add to the jboss-log4j.xml file to accomplish this task.

<log4j:...>
 ...
 <appender name="JBIA" ...>
 ...
 <param name="File"
 value="${jboss.server.log.dir}/jbia.log"/>
 ...
 </appender>
 ...
 <category name="org.jbia">
 <priority value="DEBUG"/>
 <appender-ref ref="JBIA" />
 </category>
</log4j>

We give the appender a unique name, JBIA in this example B, so that we can refer-
ence it later. The File parameter identifies the log file name C. We specify the cate-
gory D and priority E to identify what we want to log, and then we reference the
appender F that we named earlier B. We did not provide the entire appender con-
figuration as it’s the same as for the FILE appender that already appears in the jboss-
log4j.xml file, except the name attribute is set to JBIA instead of FILE.

 These examples are some of the things you can accomplish with changing the log-
ging configuration. To find out everything that you could do, refer to the log4j docu-
mentation or obtain a book on log4j.

2.2.2 Configuring directory locations

In chapter 1, we described the various default directories used by the application
server; you can change those locations. Table 2.2 lists various system properties that
define those locations, specifies the default value for each directory, and describes the
purpose of that directory.

Listing 2.8 Creating a log file specific to an application

Table 2.2 System properties that define directory locations

Property Default location Description

jboss.home.dir -installation directory-
Examples: /opt/jboss-5.0.0.GA
c:\jboss-5.0.0.GA

Directory where the applica-
tion server is installed. This is
a read-only property and can’t
be set from the command line.

jboss.home.urll -installation directory-
Examples: file://opt/jboss-5.0.0/
file:/c:/jboss-5.0.0.GA/

URL variant of jboss.home.dir.

B

C

D
E

F

38 CHAPTER 2 Managing the JBoss Application Server
Some locations have both a dir and a url variant; if you want to change the location of
such a directory, you should set both properties. For example, to change the location
of the server directory, you must set both the jboss.server.base.dir and the
jboss.server.base.url system properties. You can change any of the locations by
providing the system property on the command line or by editing the run script file.
For example, you could change the location of the log file to place it on another disk
by using this command:

run –Djboss.server.log.dir=d:/log

In addition, the application server uses other system properties of interest, which are
given in table 2.3.

jboss.lib.url <jboss.home.url>lib/ The directory containing JAR
files used to bootstrap the
application server.

jboss.patch.url -none- Directory, or file, containing
patches to the application
server classes. The class
loaders will look for classes in
this location first before
accessing the JAR files in the
lib or server/xxx/lib directory.

jboss.server.base.dir <jboss.home.dir>/server The directory containing
the server configuration
directories.

jboss.server.base.url <jboss.home.url>server/ URL variant of
jboss.server.base.dir.

jboss.server.home.dir <jboss.server.base.dir>/default The directory containing the
server configuration being run.

jboss.server.home.url <jboss.server.base.url>default/ URL variant of
jboss.server.home.dir.

jboss.server.config.url <jboss.server.home.url>conf/ The directory containing con-
figuration information.

jboss.server.data.dir <jboss.server.home.dir>/data The directory where applica-
tion-specific data is kept.

jboss.server.lib.url <jboss.server.home.url>lib/ The directory containing JAR
files used by the application
server.

jboss.server.log.dir <jboss.server.home.dir>/log The directory where the server
log is placed.

jboss.server.temp.dir <jboss.server.home.dir>/tmp The directory used as a tem-
porary work area.

Table 2.2 System properties that define directory locations (continued)

Property Default location Description

39Configuring the application server
You can query the system properties from your application. For example, if you need
to keep a file containing data somewhere, you can get the jboss.server.data.dir
system property and then save your data file within a directory under that location.

2.2.3 Defining system properties

Some properties that are kept in XML configuration files might change based on the
environment in which you’re running. For this reason, the application server provides
support for variable substitution in configuration files. This means that a configuration
file can use a variable in place of providing a value for a given configuration property.
Then, when the configuration file is loaded by the application server, it substitutes the
variable with the value that was provided for the variable. A common use of this capa-
bility is to reference the various system properties defined in the previous section.

 Variables take the following form:

${some.property.name:the_default_value}

This means that the value of the property is some.property.name, and if no property
is provided by the user, the value the_default_value will be used as a default. The sys-
tem properties can be provided by the user when the application server is started by
using the -D option as follows:

./run.sh –Dsome.property.name=8000

In addition, you can set system property values in the run.conf and run.bat script files.
 System properties can also be provided using the System Properties Service. This

service enables you to list several system properties in the server/xxx/deploy/proper-
ties-service.xml configuration file or to load system properties from one or more
.properties files. Listing 2.9 shows an example configuration.

<mbean code="org.jboss.varia.property.SystemPropertiesService"
 name="jboss:type=Service,name=SystemProperties">
 <attribute name="URLList">
 http://somehost/some-location.properties,
 ./conf/somelocal.properties
 </attribute>
 <attribute name="Properties">
 first.property=This is the first value
 second.property=This is the second value
 </attribute>
</mbean>

Table 2.3 Other system properties

Property Default value Description

jboss.server.name default The name of the server configuration. This property cor-
responds to the value of the –c option to the run script.

jboss.bind.address 127.0.0.1 The IP address to which the application server is bound.
This property corresponds to the value of the –b option
to the run script.

Listing 2.9 Configuring the System Properties Service

Locations of
properties filesB

Defines
system
properties

C

40 CHAPTER 2 Managing the JBoss Application Server
The URLList attribute block B points to properties files that contain system proper-
ties. You can provide a URL or a directory relative to the root of the server configura-
tion. If you provide multiple entries, separate them with commas.

 The Properties attribute block C configures properties directly in the service
configuration. Each property must be specified as a name/value pair on a separate
line.

 So far, we have presented all configurations as text files, so if you want to make any
configuration changes, you have to use a text editor. But JBoss AS comes with several
tools you can use to modify the configuration using JMX. We cover those tools next.

2.3 Exploring the management tools
JBoss AS comes with several tools you can use to modify the configuration, such as the
JMX Console and twiddle. These tools are generic JMX tools used to view and modify
MBeans.

 Another alternative, which we don’t cover in this book, is the JBoss Operations Net-
work (JBoss ON), which is a web-based tool that provides a single point of administra-
tion for an enterprise that has deployed JBoss AS. You can use JBoss ON to monitor
things such as multiple application servers, multiple Tomcat servers, and even the sys-
tems on which the servers are running. JBoss ON is available only with a paid JBoss AS
support subscription.

 JBoss AS 5.0 has a new administration console which is a subset of the administra-
tion functionality found in JBoss ON. You can use this administration console to con-
figure data sources and message destinations. We don’t cover the administration
console in this book because, as of this writing (JBoss AS 5.0.0.CR2 is the current ver-
sion), the administration console still isn’t available. The administration console will
either come with JBoss AS 5.0.0.GA or will be available as a separate download.

2.3.1 Using the JMX Console

The most useful tool from a developer’s perspective is the JMX Console, a web applica-
tion that can read, display, and update MBeans. To access the JMX Console, when an
application server is running, enter the following URL into a browser:

 http://localhost:8080/jmx-console

The main page of the JMX Console, also known as the agent view, lists all the MBeans
registered to the application server (see figure 2.5). Note that the MBeans are
grouped by namespace.

 Each MBean is listed as a link which, when clicked, displays details about that
MBean. For example, figure 2.6 shows the data displayed for the connection pool for
the DefaultDS data source.

 The top half of the MBean details page displays a table listing the property values
for the MBean. If a property is writeable, the value is presented in a form field. You can
change the value and click the Apply Changes button at the bottom of the table to
change the value of the property.

41Exploring the management tools
The bottom half of the MBean details page displays a table containing the various
operations supported by the MBean. There’s an Invoke button for each operation
that, when clicked, invokes the operation. If the operation accepts parameters, a list of
parameters is presented with fields where you can enter in each parameter value;
object-valued parameters can’t be entered, but you can enter almost anything else.

Needless to say, the ability to invoke any MBean operation gives you great
power. But as Spiderman learned, with great power comes great responsi-
bility. Make sure you understand the ramifications of invoking an opera-
tion before you do so. You wouldn’t want to, for example, invoke the
halt operation on the jboss.system:type=Server MBean unless you
wanted to stop the application server.

Although the JMX Console is a convenient tool for a developer, it’s not an adequate
tool for managing the application server. For example, a single data source is repre-
sented by four MBeans, each of which appears in the agent view with different links;
there’s no single page from which a data source can be managed.

 Additionally, any changes made using the JMX Console are transient. If you restart
the application server, all changes are lost. This is because the JMX Console only calls

Figure 2.5 The JMX Console main page, showing some of the accessible MBeans

WARNING

42 CHAPTER 2 Managing the JBoss Application Server
on the MBeans to change property values; it doesn’t modify the XML configuration
files used to initialize the MBeans when the application server starts.

 Finally, you can edit only MBean properties marked as writeable; therefore, some
configuration settings, such as port assignments, can’t be changed.

2.3.2 Using the twiddle utility

If you’re anti-WIMP (windows, icons, menus, pointers) and prefer the power of a com-
mand line, rejoice—for a command-line tool, named twiddle, has the same power and
flexibility of the JMX Console. The twiddle utility is well documented in the application

Figure 2.6 A JMX Console MBean detail page, showing information about the DefaultDS
data source

43Examining interesting MBeans
server documentation; there are even examples of common twiddle usage, so we’ll not
repeat them here and, instead, urge you to read the documentation.

 In addition, twiddle provides an extensive help system. To get basic help, a list of
commands, or a detailed description of a command, enter one of the following:

twiddle
twiddle –-help-commands
twiddle –H=<command>

One of the benefits of using twiddle over the JMX Console is that you can invoke twid-
dle from a script, automating many management tasks. Like the JMX Console, any
changes made to MBeans via twiddle are transient and aren’t retained when the server
is restarted. But you could build a script that starts the server and then runs various
twiddle commands to set the desired properties.

 One of the best features of twiddle is that it’s open source. Because the source is
accessible, you can use it as an example of how to programmatically access MBeans.
The main class can be found in the source distribution at console/src/main/org/
jboss/console/twiddle/Twiddle.java, and a class for each command can be found in
the console/src/main/org/jboss/console/twiddle/command directory. These classes
illustrate how you can write your own programs to manipulate JMX MBeans. Of partic-
ular interest is the method Twiddle.createMBeanServerConnection, which shows
how to access the MBean server, and the execute method in each of the command
classes, such as GetCommand, which illustrates how to manipulate MBeans.

 Now that you know how to access MBeans using both the JMX Console and twiddle,
let’s look at some MBeans that contain information that you might be interested in.

2.4 Examining interesting MBeans
Throughout this book we refer to various MBeans that are of interest for each topic
that we cover. We also mention significant properties and operations that you might
want to use to manage the MBeans. You can use the JMX Console to examine and play
with those MBeans. Let’s look at a few MBeans that aren’t covered by the other topics
in this book and highlight some of the things you can do with them. The ones that we
cover here include the following:

■ jboss:type=Service,name=SystemProperties—Enables you to examine the
system properties

■ jboss:service=JNDIView—Enables you to view the contents of JNDI
■ jboss.system:type=Log4jService,service=Logging—Enables you to change

the logging levels
■ jboss.system:service=ThreadPool—Enables you to change the thread pool

size
■ jboss.system:type=Server, jboss.system:type=ServerConfig, and jboss.

system:type=ServerInfo—Provide a wealth of information about the server

This list isn’t complete; a lot of MBeans provide a lot of information, and many of
them provide means to change the settings of the underlying services. One way of

44 CHAPTER 2 Managing the JBoss Application Server
building your vocabulary is to learn a new word each week and make the effort to
include that word in your writing and speaking. Similarly, you can learn more about
managing the application server by spending some time each week getting to know a
new MBean and the capabilities or information it puts at your mouse pointer. There-
fore, consider the following as only a small introduction into the MBean possibilities.

2.4.1 Viewing system properties

The jboss:type=Service,name=SystemProperties enables you to examine the sys-
tem properties. The showAll method returns a collection of system properties. The
output from the showAll method as seen in the JMX Console is shown in figure 2.7.
The list of properties is in alphabetical order. Well, actually, it’s ASCII order.

The system properties come in handy when they’re used to identify locations or
other things within the various descriptor files. You saw an example of this earlier in
section 2.2.1 when we used the jboss.server.log.dir property to identify the loca-
tion of the log file. You can do the same thing within your applications descriptor
files such as jboss-web.xml or jboss-service.xml.

2.4.2 Viewing the JNDI namespaces

The jboss:service=JNDIView MBean enables you to view the contents of JNDI.
As shown in figure 2.8, the list method returns a collection containing all the
JNDI namespaces, the names in each namespace, and the class for each name
and namespace.

 Sooner or later, when looking up an object in JNDI, you’ll get a class cast exception
or, perhaps, a name not bound exception. When that happens, you now know where to
look to view the names and namespaces.

Figure 2.7 Viewing the system properties in the JMX Console

45Examining interesting MBeans
2.4.3 Changing the logging levels

The jboss.system:type=Log4jService,service=Logging MBean enables you to
change the logging levels. If you prefer something a little more interactive, this MBean
enables you to change various logging settings. You can capture and output in the log
files output normally written to standard out and standard error; you can even decide
what level output to log, as illustrated in figure 2.9.

 This example shows how to use the JMX Console to set the level of logging for
Hibernate to INFO.

Figure 2.8 Viewing the JNDI namespace using the JMX Console

Figure 2.9 Using the
JMX Console to change
the log settings

46 CHAPTER 2 Managing the JBoss Application Server
2.4.4 Increasing the thread pool size

The jboss.system:service=ThreadPool MBean enables you to change the thread
pool size. If you find that the response time on your application has suddenly
increased, it could be that there aren’t enough threads to handle the requests. You
can use this MBean to view how many requests are waiting for a thread (the QueueSize
attribute), and if a large number of requests are waiting, you can increase the maxi-
mum number of threads available by changing the MaximumPoolSize attribute value.

2.4.5 Obtaining application server information

The jboss.system:type=Server, jboss.system:type=ServerConfig, and jboss.
system:type=ServerInfo MBeans provide a variety of information about the applica-
tion server. Almost everything you might want to know about the application server is
kept here, things such as the build level of the application server, operating system
information, the server configuration name and its directories, Java Virtual Machine
(JVM) information, host name, heap memory available, and much more.

 You’ve now completed the first step on your journey and should understand the
basic concepts behind configuring and managing the application server. In the chap-
ters that follow, as we go over various services and components provided by the appli-
cation server, we continually return to the theme of management and configuration,
pointing out specific configuration files and their settings.

2.5 Summary
In this chapter, you learned that JBoss AS is a set of components built on top of a POJO
microcontainer, with other components built on top of the JMX kernel that runs on
top of the microcontainer. You also learned that each component is configured using
its own configuration XML file; therefore, you can easily change the configuration
using a basic text editor. Can you say: vi? Or if you’re running on Windows, you can
use Visual Notepad.

 You also examined some of the tools provided by JBoss AS to change the configura-
tion. One, the JMX Console, was web based, and the other, the twiddle utility, uses a
command-line interface. Although these tools do let you change the configuration
settings of MBeans at runtime, the changes aren’t persistent because they’re lost when
the application server is restarted.

 Finally, you were introduced to some MBeans that provide helpful information
about the application server, such as the MBeans that give the list of names in the JNDI
namespace or a list of system properties. In the chapters that follow, we call out even
more MBeans used to manage or get information about services or applications
deployed to the application server. And that’s a great segue into the topic of the next
chapter—deploying applications.

2.6 References
log4j documentation —http://logging.apache.org/log4j/docs/documentation.html
JMX specification —http://jcp.org/en/jsr/detail?id=3

http://logging.apache.org/log4j/docs/documentation.html
http://jcp.org/en/jsr/detail?id=3

Deploying applications
In a way, JBoss AS is much like a new house that you’ve purchased. The house has
floors, doors, windows, walls and a roof, all of which correspond to the services pro-
vided by JBoss AS. Although these things do keep the rain off of your head and shield
you from the wind, they don’t add character to a house; they don’t make it a home.

 To make a house into a home, you add the furnishings, the decorations, and
other items that give both purpose and character to each room. Similarly, you have
to add applications to JBoss AS to provide it with personality, utility, and purpose. As
a table, chairs, and dinnerware can transform an empty room with four walls into a
dining room in which to entertain friends or family, a well-crafted web application
deployed to JBoss AS can convert it into an inviting website for your customers to visit.

 The whole purpose of an application server is to run applications. But before
you can run those applications, they must be deployed. This chapter discusses the
types of applications (and we use that term loosely) that can be deployed and

This chapter covers
■ Understanding application deployment
■ Understanding class loading
■ Fixing common deployment errors
■ Deploying miscellaneous applications
47

48 CHAPTER 3 Deploying applications
how deployment works within the JBoss AS. Let’s look, first, at what it means to
deploy an application.

3.1 Understanding deployment
Deployment consists of two phases. First, you notify the application server, either
directly or indirectly, of an application to deploy. Second, the application server per-
forms the necessary steps to make that application ready for use.

 JBoss AS uses a plug-in deployer architecture where separate deployers are respon-
sible for deploying applications of different types. This makes the deployment archi-
tecture modular and enables you to easily define new types of applications.

3.1.1 Deploying an application

Perhaps the simplest way to deploy an application is to place it in the server/xxx/
deploy directory. If the server is running, the deployment scanner scans this directory
periodically, and if it sees any new or updated applications, it deploys them. If the
server isn’t running, the deployer scans the directory when it starts.

 If the application is updated—for example, by copying a newer version of the
application with a more recent timestamp to the deploy directory—then the deploy-
ment scanner undeploys the old application before deploying the new. One side
effect of this undeploy/deploy action is that any current application state is lost,
including any session state for active users. Therefore, it’s not a good idea to use hot
deployment in a production environment unless you’re absolutely sure that you won’t
interrupt the existing sessions. After all, if you drop the session state for a thousand
customers, you’ll either receive a lot of angry emails or phone calls or suddenly find
yourself without any customers at all.

 Undeploying an application is easy: remove the application from the deploy direc-
tory. The next time the deployment scanner runs, it notices that the application no
longer exists and undeploys it.

 An alternate mechanism to deploying an application is to use the deploy or rede-
ploy operation of the jboss.system:service=MainDeployer MBean. You can use
either the JMX Console or twiddle to invoke this method. You could, for example, use
twiddle to deploy a file named myapp.ear, located in a directory named /some/path,
by entering the following at a command prompt (all on one line):

twiddle invoke "jboss.system:service=MainDeployer"

➥ deploy /some/path/myapp.ear

The application to be deployed must be accessible to the server because the application
server deploys the application in its current location; this method doesn’t copy the
application to the server configuration’s deploy directory, meaning that in the example
the application is deployed from where it’s located—at /some/path/myapp.ear. Addi-
tionally, because the application isn’t copied to the deploy directory, if you restart the
application server, the application is no longer deployed. Use the undeploy method on
the same MBean to undeploy an application deployed in this manner.

49Understanding deployment
 If you use a script to start the application server, you can always add twiddle state-
ments to deploy the desired applications. Two positive notes about this mechanism:
you can use it in the case where the JBoss AS installation directory has been marked as
read-only (because the application isn’t copied to the deploy directory), and you can
use it to deploy applications even if the hot deployer has been turned off.

NOTE Astute readers are probably wondering about Java Specification Request 88
(JSR-88), which defines Java EE application deployment. You will be happy
to know that JBoss AS supports JSR-88. But you’ll be unhappy to know that
it has a few problems which prevent us from recommending its use. First,
no tool uses JSR-88; if you want to use JSR-88 to deploy an application, you
have to write code. Second, applications deployed using JSR-88 are placed
into the tmp directory and aren’t redeployed when the application server
is restarted. Therefore, you have to redeploy the applications when the
application server is restarted.

3.1.2 Understanding application packaging

When you deploy an application, you always deploy the application’s package. A pack-
age can be either an archive file or an exploded directory. An archive is a file such as a
Web Archive (WAR) or Enterprise Archive (EAR) file. But, what is an exploded direc-
tory? Let’s look at an example. Assume you have an application that consists of an EJB
Java Archive (JAR) file and a WAR file containing a web interface. You can package
these files into an EAR file—let’s call it myapp.ear—and copy the myapp.ear file to the
deploy directory. That’s an example of deploying an archive file. Or, you can place the
JAR and WAR files in a directory named myapp.ear and copy the whole myapp.ear
directory to the deploy directory. This is an example of an exploded directory. You
could go even further and unpack the WAR file, the JAR file, or both. Figure 3.1 illus-
trates the files on disk in both deployment scenarios.

 You might ask: which is the preferred mechanism? Both have their good and bad
sides. With a single archive file, there’s only one file to deal with, and there’s not the pos-
sibility of the application being partially deployed because one of the files was deleted
(as an example).

 There are several advantages to having
an exploded directory. First, all the config-
uration files and deployment descriptors
are in plain view and can be easily edited. If
you edit the primary descriptor for an appli-
cation, such as the application.xml file
within an EAR, then the hot deployer rede-
ploys the application. Table 3.1 lists the pri-
mary descriptors for each application type.

 Second, you can change JSPs, style
sheets, and various other text files, and the
application automatically starts using them

Deployed as
exploded
directory

Deployed as
archive file

Figure 3.1 Deploying an archive file vs. an
exploded directory

50 CHAPTER 3 Deploying applications
(though for a style sheet or image file, the client might have to hit the browser refresh
button to see the update). Third, you can easily add new files. For example, you might
have a doc directory that contains PDF files and a servlet that generates a web page of
links to those files based on the contents of the doc directory. Adding a new PDF is
easy: copy it to that directory. The downside to exploded deployment is that you have
to contend with multiple files instead of a single file.

 One other thing to note: if you deploy an archive file, the deployer unpacks the
file into the server/xxx/tmp/deploy directory using a generated name based on the
archive filename, such as myapp28562-exp.ear for the previous example. This direc-
tory contains the exploded version of the archive, although any JAR files are left as
they are and aren’t unpacked. Before you think that this is convenient and provides
you with the best of both worlds, realize that, when the application server is restarted,
most of the contents of the server/xxx/tmp/deploy directory are deleted. Therefore,
you should never rely on the contents of anything in the server/xxx/tmp directory.
After all, there’s a reason that it’s named tmp!

3.1.3 Understanding application types

As we mentioned in the introduction to this chapter, we use the term application in a
broad manner. So, what is an application? According to Webster, one of the definitions
for application is a use to which something is put. You can infer that to mean that an appli-
cation is any use to which you put the application server, or an application is anything
that performs a useful function that you can deploy to the application server.

 Two primary types of applications are business applications and services. A business
application provides a business function, typically to end users, whereas a service pro-
vides functionality that supports other applications. Often, application is used to refer to
only business applications, but in this chapter, we’ll use application in the general sense.

 Webster’s definition provides a lot of leeway in what is considered to be an applica-
tion, but that’s good because JBoss AS supports a large number of different applica-
tion types. How does it distinguish between one type of application and another? It
uses the suffix for the application’s file or directory name. Table 3.2 lists the various
suffixes, describes their purposes, and provides the chapter or section where the
application type is covered in more detail.

 With so many application types, how does the application server know in which
order to deploy them? That’s the question we answer next.

Application type Primary descriptor

WAR WEB-INF/web.xml

EAR META-INF/application.xml

SAR META-INF/jboss-service.xml

JAR META-INF/ejb-jar.xml

RAR META-INF/ra.xml
Table 3.1 Primary descriptors
for various application types

51Understanding deployment
Table 3.1 Application types and their suffixes

Suffix Application type See

.deployer
-deployer-beans.xml

Defines an application deployer, which is used to deploy a
specific type of application. These application types show up
only in the server/xxx/deployers directory.

Section 3.1.5

.aop
-aop.xml

Defines aspects to apply to classes that extend or add func-
tionality to those classes.

—

.sar
-service.xml

Defines a service, which adds functionality to the application
server.

Chapters 7 and 8

-jboss-beans.xml Defines POJOs for the microcontainer. Chapter 2

.rar Defines a resource adaptor, which is used to connect to
enterprise information systems using the Java Connector
Architecture (JCA).

—

-ds.xml Defines a data source, which is used to access data in a
database.

Section 3.4.1

.har Defines a Hibernate archive, which is used to access a data-
base using Hibernate.

Section 3.4.2

.jar Defines a collection of EJBs that provides business logic for
an application. Could also be a class library, but those typi-
cally are packaged within other applications or are placed in
the server/xxx/lib directory as opposed to being placed in the
server/xxx/deploy directory.

Chapter 7

.zip The deployer examines the contents of the zip file to deter-
mine what type of application it contains and then deploys
the application using the proper deployer. For example, if the
zip file contains WEB-INF/web.xml, it deploys the file as a
web application. But there’s one oddity: the default context
for a WAR deployed as a zip file is the full filename, such as
http://localhgost:8080/someapp.zip.

—

.war Defines a web application, which provides a web interface for
an application or a web service.

Chapters 5 and 9

.wsr A JBoss-specific archive that defines a web service. Use this
suffix to deploy the web service after all the WAR files have
been deployed.

Chapter 9

.ear Defines a Java EE application, which is a collection of EJBs,
WAR files, and class libraries.

Chapter 7

.bsh Defines a service using bean shell script. —

.last Treated as a directory (or archive file) of applications to be
deployed. The contained applications are deployed last, in the
order given by their suffixes.

Section 3.1.4

52 CHAPTER 3 Deploying applications
3.1.4 Understanding deployment ordering

During initialization, or when the deployer is presented with multiple applications to
deploy, deployment is performed in a specific order based on the application type. It
just so happens that table 3.2 lists the application types in the default order in which
they’re deployed.

 Conveniently, the *.last archive is deployed last. If you have an application that
needs to be deployed after everything else is deployed, create a directory named, for
example, doit.last in the server/xxx/deploy directory and place your application into
that directory. Then you can rest assured that all the other applications are deployed
before your application.
DEALING WITH NESTED APPLICATIONS

You can create an application that contains embedded applications. The obvious exam-
ple is an EAR file which can contain both JAR and WAR files. But you’re not limited to
that; you could have a JAR that contains a SAR that contains a—well, you get the idea.
How do these Russian-doll-styled applications figure in the deployment ordering?

NOTE A Russian doll is a set of dolls (usually wooden) of decreasing size that
can be nested one inside another. This principle, when used in design,
is known as the matryoshka principle. The nesting of packages is similar
in concept.

First, the outer application type determines the order of the
deployment among all applications at that level. Then, when it
comes time to deploy the Russian-doll-styled application, the
innermost application is deployed first. If there are multiple
applications at any level, the suffix ordering applies. Figure 3.2
illustrates the ordering of the deployment of a hypothetical set
of applications. The number next to each application identi-
fies its relative deployment ordering.

 Having said this, there are ways to override the order of
applications deployed in a Russian-doll-styled application. For
example, within an EAR file the META-INF/application.xml file
defines the ordering applied to the embedded applications.
The later chapters on the application types cover any such
ordering mechanisms.

3.1.5 Deployment configuration options

The deployer is configured via the deployers.xml and profile.xml descriptor files,
both found in the server/xxx/conf directory. This file defines several POJOs that
manage various deployment responsibilities. Table 3.3 identifies each of these POJOs
and highlights some of the more interesting configuration properties provided by
each one.

1

2
3

4

5

6

7

8

9
10
11

12
13

14
15

16

Figure 3.2 Deployment
ordering with Russian-
doll-styled applications

53Understanding deployment
Table 3.2 Deployer POJOs configuration properties

Bean Property Description

MainDeployer structuralDeployers A list of beans that define the high-level classifi-
cation of the kinds of things that can be
deployed. For example, a number of file types are
packed archives and are listed for the
JarStructure bean. These are defined by a
set of file extensions such as .zip, .ear, and so
on. Or text files that define services, such as *-
ds.xml and *-service.xml, which are defined for
the FileStructure bean.

deployers A list of the various deployers. These deployers
handle the files that were identified by the
structuralDeployers. Think of it this way:
the structuralDeployer property identi-
fies all the file types that are of interest, whereas
the deployers property identifies the services
that deploy each of those file types.

DeploymentFilter prefixes
suffixes
matches

Identifies which files or directories can be
ignored by the deployer. The matches property
matches a full, simple directory or filename,
whereas the other two properties match prefixes
or suffixes. Each is a list of comma-separated
strings. Notice that the items listed reflect things
such as temporary files created by editors or
other software, work files or directories used by
source control systems such as Subversion, and
so on.

VFSDeploymentScanner URIList A list of locations that the deployer scans for
applications to deploy. See the section after this
table for an example.

URIs Same usage as URIList, but the list is provided
as a single, comma-separated string of values.

recursiveSearch Indicates whether the scanner should recursively
search subdirectories for applications to deploy.
Only used when a directory name doesn’t have a
dot in it. For example, various messaging service
descriptors are located in the server/xxx/
deploy/messaging directory. As long as this
property is true, which is the default value, the
messaging directory is scanned for applications
to deploy. If this property is set to false, that
directory isn’t scanned, possibly causing signifi-
cant problems if you plan on using the messag-
ing service. This setting doesn’t affect exploded
application directories, such as jmx-console.war,
because they always have dots in their names.

54 CHAPTER 3 Deploying applications
As noted in the table, you can specify multiple deployment locations. Perhaps the best
way to see how to do this is by an example.
USING MULTIPLE DEPLOYMENT LOCATIONS

Let’s assume that you prefer to deploy your applications to a directory other than the
default server/xxx/deploy directory. For example, directory access might be set so
that you only have read-only access to the application server installation directory, and
you can’t write to the deploy directory. In such a case, you can modify the configura-
tion to also deploy files placed at /opt/deploy (as an example) by setting the URIList
property of the VFSDeploymentScanner bean as shown in listing 3.1.

<deployment xmlns="urn:jboss:bean-deployer:2.0">
 ...
 <bean name="VFSDeploymentScanner" ...>
 ...
 <property name="URIList">
 <list elementClass="java.net.URI">
 <value>${jboss.server.home.url}deploy/</value>
 <value>file:/opt/deploy/</value>
 </list>
 </property>
 </bean>
</deployment>

Note the trailing slash used for /opt/deploy/. It signifies that the defined location is
a directory that should be scanned for applications to deploy. If the trailing slash is

VFSBootstrapScanner (same as for
VFSDeploymentScanner)

Locations to be scanned as part of the bootstrap
process. Unless you want to change how boot-
strapping is done, you shouldn’t change this.

VFSDeployerScanner (same as for
VFSDeploymentScanner)

Locations to be scanned for the various deployers.

HDScanner scanEnabled Set this to true (default) to enable the hot
deployer and to false to disable it. When set to
false, applications are deployed only when the
server is started or when the deploy method on
the MainDeployer MBean is called.

scanPeriod The number of milliseconds the hot deployer
waits between performing scans. The default is
5000 milliseconds (5 seconds). This value is
ignored if scanEnabled is set to false.

scanThreadName You can use this to change the name of the
thread from its default of HDScanner. The thread
name enables you to identify the hot deployer
thread if you should take a thread dump.

Listing 3.1 Deployment directories in profile-service.xml

Table 3.2 Deployer POJOs configuration properties (continued)

Bean Property Description

55Understanding class loading
missing, the location is assumed to be a single application—either an archive file or
an exploded directory—to deploy. In that case the location would have to have one
of the accepted suffixes, such as /opt/someapp.war.

 With the above change, you can now place applications in the /opt/deploy direc-
tory, and they’re treated as if they were placed in server/xxx/deploy. They’re even
automatically redeployed when the server is restarted.

 One of the concerns you’ll have when deploying an application is where to place
the JAR files required by that application. Should they be packaged with your applica-
tion, placed in the server/xxx/lib directory, or added to the class path? Before we can
answer this question, you first need to understand how the class loader works—the
topic of our next section.

3.2 Understanding class loading
The JBoss AS documentation contains a detailed description of how the application
server loads classes. In addition, several wiki pages describe class loading and solving
problems with class loading. Rather than repeat that text here (which in program-
ming circles is known as reuse, but in literary circles is known as plagiarism—with
apologies to the great Lobachevsky), we take a slightly different tack.

NOTE JBoss AS 5.0 introduced a new class loader based on the new Virtual File
System (VFS). The VFS was implemented to simplify and unify file han-
dling within the application server. The new class loader, named the VFS
Class Loader, uses VFS to locate JAR and class files. Even though this rep-
resents a significant change in how classes are loaded in JBoss AS 5.0, the
resulting behavior is much the same as for prior versions of JBoss AS.

The JBoss AS documentation gets down into some nitty-gritty details concerning class
loading and can overwhelm you if you’re first encountering the topic. Therefore, we
describe a more simplified view of how the application server loads classes. We should
point out that the simplified view might not fit all cases, so if you run into one of those
cases, we encourage you to read the JBoss AS documentation to more fully understand
class loading. Hopefully, after reading our simplified introduction, you’ll find the in-
depth details easier to digest.

 We start with a description of the class loaders because the application server uses
many class loaders so that it can properly differentiate between classes, if required.
Then we go into class scoping, which enables the application server to differentiate
among classes. Finally, we look at loader repositories, which enable several class load-
ers to share or isolate classes.

3.2.1 Understanding multiple class loaders

The application server uses multiple class loaders, each of which load a specific set of
classes. Part of the reason for doing this is to separate the various applications that are
deployed. For example, if there were only a single class loader, and one application
needed a specific version of a class and another application needed a different ver-
sion, then you could have a problem. One application would have to use the wrong

56 CHAPTER 3 Deploying applications
version, possibly resulting in errors. By utilizing multiple class loaders, each applica-
tion can load its own version of the class.

 The application server keeps track of all the class load-
ers and implements rules that define not only which class
loader loads a given class, but also whether classes loaded
by one class loader have access, or visibility, to classes
loaded by another class loader. Figure 3.3 provides a sim-
plified view of such class visibility; each box in the diagram
represents a class loader. In the diagram, classes at a cer-
tain level have visibility to other classes at the same level
and to classes in a lower level, but they don’t have visibility
to classes at a higher level.

TIP No applications have visibility to classes within a WAR file that, by the servlet
specification, are required to be separate. You can change that behavior by
setting the useJBossWebLoader property of the WarDeployer bean in the
server/xxx/deployers/jbossweb.deployer/META-INF/war-deployers-jboss
-beans.xml file to true. If that doesn’t give full visibility, you might also want
to set the java2ClassLoadingCompliance property of that same bean to
true. The war-deployers-beans.xml file contains descriptions of the usage
of both of these properties.

At the lowest level are the classes in the class path, including basic Java Virtual
Machine (JVM) classes (such as those in rt.jar) and the boot classes for the applica-
tion server found in the lib directory. The next level consists of all the classes for
deployed applications and the application server classes found in the JAR files in the
server/xxx/lib directory. The topmost level represents classes in a WAR file, which
could be in the deploy directory or within an EAR or Service Archive (SAR) file.

 This visibility of classes comes in handy if you want to share large class libraries
among several applications. Doing so cuts down on the amount of memory needed to
run those applications. The downside is that, if two deployed applications require dif-
ferent versions of a class library, they won’t be able to run this way. To get these two
applications to deploy properly, you’ll need to know about scoping.

3.2.2 Scoping classes

You can specify that a particular application should have its own class loader reposi-
tory and prefer using its own classes over those available in other applications. This is
known as scoping. You do this by defining a class loader repository in one of the JBoss
AS–specific configuration files. First, let’s look at an example of configuring class scop-
ing, and afterwards we’ll describe loader repositories.

 To do scoped class loading for a SAR file, modify the META-INF/jboss-service.xml
file to contain the following:

<service>
 <loader-repository>jbia.loader:loader=Loader1</loader-repository>
 …
</service>

War

Application
in deploy
directory

Application
server

(server/xxx/lib)

Classpath, lib directory

Visibility

Figure 3.3 A simplified view of
class visibility, where classes in
files or directories higher in the
diagram can reference classes in
directories lower in the diagram.

57Understanding class loading
For an EAR file, modify the META-INF/jboss-app.xml file to contain the following:

<jboss-app>
 <loader-repository>jbia.loader:loader=Loader2</loader-repository>
 . . .
</jboss-app>

And for a WAR file, modify the META-INF/jboss-web.xml file to contain the following:

<jboss-web>
 <class-loading>
 <loader-repository>jbia.loader:loader=Loader3</loader-repository>
 </class-loading>
 . . .
</jboss-web>

The only part of the name that’s important is the loader attribute; you can name the
rest anything you want. For example, each of the following is valid:

<loader-repository>foo.bar:loader=some.stuff</loader-repository>
<loader-repository>com.myorg:loader=org.ear</loader-repository>

Additionally, if your application uses different versions of JAR files available in the
server’s server/xxx/lib directory, you can set the java2ParentDelegation class loader
repository property to false to force the application server to use the classes in your JAR
files instead. Here’s how it would look in a SAR archive’s META-INF/jboss-service.xml file;
it’s similar for the other files.

<service>
 <loader-repository>jbia.loader:loader=Loader1
 <loader-repository-config>java2ParentDelegation=false

 </loader-repository-config>
 </loader-repository>
 . . .
</service>

The tags used in the previous configuration files refer to loader repositories, not to
class loaders. So, what are loader repositories? We answer that question next.

3.2.3 Understanding loader repositories

You might wonder how class loader repositories relate to class loaders and if they’re
the same or different. Well, they’re different. The application server creates many
class loaders, one for each application. If you run the JMX Console, you can see them
about one-third of the way down on the agent view page. Their names all begin with
jboss.classloader:id=.

 In addition, the application server maintains several loader repositories, which are
locations from which the application server can load classes. One loader repository
might be used by one class loader while another is used by several class loaders. For
example, although there’s a separate class loader for each deployed application, they
all use the same loader repository. Or if you define a loader repository for an applica-
tion then the class loader for that application uses its own class loader repository.

 If you define a loader repository for an application, the class loader for that appli-
cation gets its own repository. The end result is that classes within that application

58 CHAPTER 3 Deploying applications
prefer classes inside the application to classes outside the application. As a side effect,
classes in other applications don’t have visibility to classes within that application.
Think of it as a one-way mirror wrapped around the application—it can see out, but
nobody can see in.

 Figure 3.4 illustrates class preferences with and without using a loader repository. JAR
file three.jar is in the server/xxx/lib directory and contains version 1 of class C, whereas
EAR files one.ear and two.ear are in the server/xxx/deploy directory, and contain
classes A and B, respectively. In addition, two.ear contains version 2 of class C. To ensure
that the classes in two.ear pick up the correct version of class C, a loader repository is
declared within two.ear. When class A references class C,
it gets the one in three.jar, but when class B references
class C, it gets the one in two.ear. Using EAR files is an
example; we could have used SAR, JAR, or any other
archive type. And the result would be the same.

 As we mentioned earlier when we started this discus-
sion on class loading, what we have presented here is a
simplistic view of how the application server deals with
class loading. For more in-depth knowledge, we recom-
mend that you read the JBoss AS documentation. But you
should now be able to figure out most of the common
problems associated with class loading.

3.3 Fixing common deployment errors
Application deployment is one area where it appears that Murphy’s Law rules: inevita-
bly, something will go wrong. But when it does, you can console yourself with knowing
that you’re not the only one to have such misfortune; a quick browse through the
JBoss online user’s forums reveals that many others have been visited by Murphy also.
We’ve gleaned some of the more common deployment problems from the forums,
and we provide suggested solutions for correcting the following issues:

■ Class not found exceptions
■ Duplicate JAR file errors
■ Zip file errors
■ Class cast exceptions

3.3.1 Class not found exception

A ClassNotFoundException error usually is caused by one of two issues. The one that
probably comes to mind immediately is that you’re missing a JAR file. The typical solu-
tion is to find which JAR contains that class and to include it in your WAR or EAR file.
One solution is to use Ant with the following class path:

<path id="classpath">
 <fileset dir="/" includes="**/*.jar" />
</path>

tw
o.
ea
r

B

on
e.
ea
r

A three.jar

C

../deploy ../lib

1

C2

Figure 3.4 An example of how
class loader repositories affect
class access, where classes A
and B each reference the
expected version of class C

59Fixing common deployment errors
For those of you not inclined to take such drastic measures, the jarFinder utility is for
you. You can use it to search through a directory of JAR files (including subdirecto-
ries) looking for a class, a property, or any other kind of file, with a given name.

 You can download the source for jarFinder at http://www.isocra.com/articles/
jarFinder.php. The files also appear in the source for this book. Once you download
it, unzip it and build it using the provided build.xml Ant script. The resulting class
files appear in the classes subdirectory, which you must include in the class path.
Here’s an example of running the utility to locate the org.jboss.aop.advice.Inter-
ceptor class within the JBoss installation directory:

java –cp classes com.isocra.utils.jarSearch.DirectorySearcher

➥ $JBOSS_DIR org.jboss.aop.advice.Interceptor.class

Once you locate the JAR file that contains the class, you should include it in your
application. If you have a client application with this problem, then you should
include the JAR file in your client’s class path.

 The often-overlooked root cause is that the wrong class loader is looking for the
missing class. For example, a servlet in your WAR file invokes an EJB located in a
JAR file in the EAR file that, in turn, attempts to access a class in the WAR file. The
issue here is that the classes in the EAR file don’t have visibility to the classes in the
WAR file.

 The solution is fairly simple: move the JAR file to a lower level in the class visibility
hierarchy. For the example, you move the classes out of the WAR file and into the EAR
file. You might have to repackage your classes because you should keep the servlet
classes in the WAR file. Now the servlets and the EJBs have access to the classes.

 A variation of this problem for a client application occurs when the text no security
manager appears, as follows:

javax.naming.CommunicationException [Root exception is
java.lang.ClassNotFoundException: org.jbia.SomeMissingClass
(no security manager: RMI class loader disabled)]

A Google search would seem to indicate that you need to set up a security manager,
but that’s typically not necessary. Instead, the solution is to make the necessary JAR file
available in the class path for the client application.

3.3.2 Duplicate JAR files

Another common problem is including a JAR file in your application that’s already
provided in the application server’s server/xxx/lib directory (or even elsewhere, such
as the tag library JAR, jstl.jar, which is provided in the server/xxx/deploy/jbossweb.sar
directory). Sometimes this isn’t a problem, but if you get a ClassCastException, you
might look to see if you’re packaging JAR files that are already supplied by the applica-
tion server.

 A variation of this problem happens when you include the log4j.jar file in your
application. Then, you get the following error:

http://www.isocra.com/articles/jarFinder.php
http://www.isocra.com/articles/jarFinder.php

60 CHAPTER 3 Deploying applications
10:42:50,093 ERROR [STDERR] log4j:ERROR "org.jboss.logging.util.Only
OnceErrorHandler" was loaded by [org.jboss.system.server.NoAnnotatio
nURLClassLoader@1de3f2d].
10:42:50,249 ERROR [STDERR] log4j:ERROR Could not create an Appender
. Reported error follows.
10:42:50,249 ERROR [STDERR] java.lang.ClassCastException: org.jboss.
logging.appender.DailyRollingFileAppender

In either case, the solution is simple: remove the offending JAR file from your archive,
or define a separate class loader repository for the application.

3.3.3 Zip file errors

Archive files are in a zip file format, and the zip file classes provided by the JVM are
used to unpack such archives. A variety of exceptions are thrown when the zip file
classes have problems unpacking files. These problems typically occur if an archive is
being copied to the deploy directory, and at the same time, the hot deployer runs and
attempts to deploy a partially copied file.

 Assume you have a WAR file that’s 10 MB due to the number of JAR files you need
to include. Also assume that when you copy the file over a network to the deploy direc-
tory, it takes the file 20 seconds to copy. Recall that the hot deployer runs every 5 sec-
onds, so we can guarantee you that the hot deployer will attempt to deploy the file
before it has been completely copied. The result—a zip file error.

 A variation of this problem happens when deploying an exploded directory; all the
files aren’t copied before the hot deployer runs, and you get a missing file error. But
when you look for the file, there it is. Unfortunately, cursing the hot deployer does
you no good.

 The solution is to not copy anything into the deploy directory. Instead, copy the
application package into a temporary location on the same hard drive partition as the
deploy directory. Then once the copy is complete, move the package to the deploy
directory. Such a move, because it’s on the same partition, is atomic.

3.3.4 Class cast exception

Class cast exceptions can be caused by a variety of problems. The most obvious is that
the object you’re attempting to cast isn’t of the type you thought. You can easily deter-
mine this by examining the class of the object you’re attempting to cast, either
through using a debugging tool or by adding logging code to your application to print
out the class of the object. But there are two other subtle causes that can take place
when using an application server.

 First, you might be getting an object, such as an EJB, from JNDI and then attempting
to cast the resulting object. For example, consider the following code to access an EJB:

Context ctx = new InitialContext();
MyEjb ejb = (MyEjb)ctx.lookup(“MyEjb”);

One potential problem in this code is that you used the wrong JNDI name to look up
the EJB. For example, by default, the EJB has the name MyEjb/local. In this case, what

61Deploying miscellaneous applications
gets returned by the lookup method is a JNDI Context object—hence, the class cast
exception. The solution is to use the full EJB name, as follows:

MyEjb ejb = (MyEjb)ctx.lookup(“MyEjb/local”);

A second potential problem is that the name of the EJB might be MyEjb, but that’s for
the remote interface. In this case, you have to use the narrow method on the
RemoteObject class as follows:

Object obj = ctx.lookup(“MyEjb”);
MyEjb ejb = (MyEjb)RemoteObject.narrow(obj, MyEjb.class);

Another subtle cause for the class cast exception might be that the object was created
using one class loader, and you’re attempting to cast it within a class loaded by
another class loader. For example, assume you obtained a collection called coll and
are extracting org.foo.Widget objects out of it using the following code:

Object obj = coll.get(i);
log.debug(“obj=” + obj.getClass());
org.foo.Widget w = (org.foo.Widget)obj;

When it executes, the code prints the following line in the log file:

...obj=org.foo.Widget

Yet, the third line of the code causes a class cast exception.
 This usually happens if you package, within your application, a JAR file that’s

already provided by the application server. The object was probably created using the
class as defined in the application server, and then the cast is being done using the
class definition from your application. Even if the two classes are identical, because
they’re handled by different class loaders, they’re considered to be different classes.
The solution is to either identify a separate class loader repository for your application
or to remove the duplicate class library from your application.

3.4 Deploying miscellaneous applications
You should now know all about deploying applications to the application server.
You’re even prepared for a visit from Murphy. In the chapters that follow, we cover sev-
eral types of applications. But before we get to them, some application types don’t
need a whole chapter to describe, so we cover them here. These applications are data
sources and Hibernate archives.

3.4.1 Deploying data sources

At some point in time, you’ll want to access data in a database, and you’ll require
some mechanism to do this. Your application could use Java Database Connectivity
(JDBC) to access the database directly; but, that has one fairly major problem—estab-
lishing a connection with the database is an expensive operation. And with a web
application, you might find that a significant amount of time is spent hitting the data-
base, so you might want to avoid having to frequently reestablish connections.

62 CHAPTER 3 Deploying applications
 The solution to this problem is to let the application server manage your database
connections using a data source. The application server can then manage the data-
base connections by pooling them and by providing connections to the application
when it needs them. The question then becomes: how does one declare, or deploy, a
data source to the application server?

 The answer is to create, and then deploy, a *-ds.xml file. You can use any name for
the file that you like, as long at the suffix is –ds.xml. Listing 3.2 shows an example.

<datasources>
 <local-tx-datasource>
 <jndi-name>MySqlDS</jndi-name>
 <connection-url>jdbc:mysql://mysql-hostname:3306/jbossdb

➥ </connection-url>
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <user-name>x</user-name>
 <password>y</password>
 <min-pool-size>5</min-pool-size>
 <max-pool-size>20</max-pool-size>
 <idle-timeout-minutes>0</idle-timeout-minutes>
 <blocking-timeout-millis>5000</blocking-timeout-millis>
 <exception-sorter-class-name>

➥ org.jboss.resource.adapter.jdbc.vendor.MySQLExceptionSorter

➥ </exception-sorter-class-name>
 <check-valid-connection-sql>SELECT COUNT(*) FROM FooBar
 </check-valid-connection-sql>
 <metadata>
 <type-mapping>MySQL</type-mapping>
 </metadata>
 <connection-property name="xxx" type="java.lang.String">yyy

➥ </connection-property>
 </local-tx-datasource>
</datasources>

The <local-tx-datasource> tag defines a particular type of data source that handles
local transactions. Three different data source types are available, each of which han-
dles transactions differently. Table 3.4 describes each type.

Listing 3.2 Example *-ds.xml file

Table 3.3 Data source transaction types

Tag Description

<local-tx-datasource> Identifies a data source that uses transactions, even distributed trans-
actions within the local application server, but doesn’t use distributed
transactions among multiple application servers.

<no-tx-datasource> Identifies a data source that doesn’t use transactions. This option
isn’t shown in the example, but would appear in place of the
<local-tx-datasource> tag.

<xa-datasource> Identifies a data source that uses distributed transaction among multi-
ple application servers. This option isn’t shown in the example, but
would appear in place of the <local-tx-datasource> tag.

63Deploying miscellaneous applications
Which transaction type should you use? In most cases, you’ll use <local-tx-data-
source> because it handles transactions within a single application server. If you’re
clustering your application servers or wanting to use distributed transactions among
multiple application servers, then you should use <xa-datasource>. Note that both
<local-tx-datasource> and <xa-datasource> handle distributed transactions
involving multiple data sources. The difference is that <local-tx-datasource> han-
dles them only within a single running application server, whereas <xa-datasource>
handles them among many running application servers. On the other end of the spec-
trum, if your applications only read from the database, then using <no-tx-data-
source> would be appropriate.

NOTE XA is an API defined by The Open Group’s Distributed Transaction Pro-
cessing model. This model provides communications mechanisms
between a Transaction Monitor and several resource managers, which
perform updates against databases. The Transaction Monitor is responsi-
ble for coordinating the individual transactions handled by the resource
managers to ensure transactional semantics when multiple resource man-
agers are involved in a single transaction.

Within the transaction type, you can specify a wide variety of configuration options.
Table 3.5 describes the various configuration options in the *-ds.xml file. A complete
set of configuration options, along with a description of each option, can be found in
the docs/dtd/jboss-ds_5_0.dtd file.

Table 3.4 Data source configuration options for *-ds.xml

Tag Description

<jndi-name> Name used to look up the data source in the JNDI namespace. The
java: prefix is automatically added to this name.

<connection-url> The URL used by the JDBC driver to establish a database connection.
This URL is specific to the database and the driver for the database.
In the example, the name of the database is jbossdb, which must be
a valid database in MySQL.

<driver-class> The class name for the JDBC driver. Valid only for <local-tx-
datasource> and <no-tx-datasource>.

<xa-datasource-class> The class name for the distributed transaction data source. Valid
only for <xa-datasource>.

<user-name> The user name for making the database connection.

<password> The password for the given user name.

<security-domain> References a security domain that uses an identity login module
defined in login-config.xml. You can use this in place of <user-
name> and <password> to provide an encrypted password to the
database.

64 CHAPTER 3 Deploying applications
<min-pool-size> The minimum number of open connections maintained by the appli-
cation server. Note that the application server doesn’t open any con-
nections until the first request for a connection, at which time it
opens the specified number of connections. To establish connec-
tions when the application server is started, you can write a simple
service that does nothing but ask for a connection.

<max-pool-size> The maximum number of open connections maintained by the appli-
cation server. If the application server runs out of connections, it allo-
cates a new connection to fulfill that request, until it hits the
maximum number of connection. At that point, it queues the
requests until connections are freed. Therefore, it’s important that
applications close any connections that they obtain.

<idle-timeout-minutes> If a surplus connection isn’t in use for the specified number of min-
utes, then that connection is closed. Note that the number of open
connections never goes below the <min-pool-size>.

<blocking-timeout-millis> The number of milliseconds a requestor waits for a connection to
become available before the wait times out. The requestor then gets
an exception.

<exception-sorter-class-name> Identifies a class used to determine if an error number returned by
the database is fatal.

<check-valid-connection-sql> Identifies an SQL to be executed when the connection is established
to verify the connection’s validity. In the example, FooBar must be a
table in the jbossdb database specified in the connection URL.

<valid-connection-checker-
class-name>

Identifies a class that can be used when the connection is estab-
lished to verify the connection’s validity. The class specified must
implement the org.jboss.resource.adapter.jdbc.
ValidConnectionChecker interface. Use this option instead
of <check-valid-connection-sql> when you want to use
more than a single SQL statement to check the connection’s validity.
Be aware that any application making a connection request that
causes a connection to be established must wait until the connec-
tion checker is finished.

<type-mapping> Used by the container-managed persistence (CMP) code to identify
the database and adjust its database handling accordingly. The
name use must match one of the names in the standardjbosscmp-
jdbc.xml file. Additionally, you can add new entries to the standardj-
bosscmp-jdbc.xml to customize the database interaction. Note that
this is used only for EJB 2.1, not for EJB3.

<connnection-property> Identifies a property to pass to the java.sql.Driver when
establishing a database connection. In the example, the property
name is xxx and the value is yyy. Refer to your JDBC driver docu-
mentation for the valid properties. You can provide multiple
<connection-property> entries. Valid only for <local-tx-
datasource> and <no-tx-datasource>.

Table 3.4 Data source configuration options for *-ds.xml (continued)

Tag Description

65Deploying miscellaneous applications
You can define multiple data sources within a single *-ds.xml file, but we recommend
that you define only a single data source per file. This makes the data sources easier to
manage.

 JBoss AS comes with a set of example *-ds.xml files for a variety of databases. You
can find them in the docs/examples/jca directory, which should be your first stop
when defining a *-ds.xml file. Also, we provide several example *-ds.xml files in many
of the chapters in this book.

 Now that you have the *-ds.xml file for your database, what do you do with it? Well,
two things. The *-ds.xml file goes into the deploy directory. Yes, that’s right; it’s
treated as an application, specifically as a service. Second, you must provide the JAR
file for the JDBC driver for the database. Place the driver JAR file in the server/xxx/lib
directory. Be careful with JDBC drivers that contain a version number as part of the
filename—you don’t want two versions of the same driver to be resident in the server/
xxx/lib directory at the same time.

 Once the data source is deployed, the application server creates several MBeans for
the data source. These MBeans are defined in table 3.6, where XXX is the JNDI name
for the data source.

<xa-datasource-property> Identifies a property to pass to the javax.sql.DataSource
when establishing a database connection. Refer to the JDBC
driver documentation for the valid properties. You can provide
multiple <xa-datasource-property> entries. Valid only for
<xa-datasource>.

<transaction-isolation> Identifies the transaction isolation level to use with the database.
Valid values include
TRANSACTION_READ_UNCOMMITTED
TRANSACTION_READ_COMMITTED
TRANSACTION_REPEATABLE_READ
TRANSACTION_SERIALIZABLE
TRANSACTION_NONE
Refer to your database’s JDBC documentation for a description of
each level and which levels your database supports. Not valid for
<no-tx-datasource>.

Table 3.5 MBeans created for a data source

MBean Description

jboss.jca:name=XXX,
service=DataSourceBinding

Manages the javax.sql.DataSource objects.

jboss.jca:name=XXX,
service=LocalTxCM

Manages the connection manager, which is responsible for
the connection pool. You can use this MBean to manage
various aspects of distributed transactions, such as the local
XA resource transaction timeout value. Created only for
<local-tx-datasource>.

Table 3.4 Data source configuration options for *-ds.xml (continued)

Tag Description

66 CHAPTER 3 Deploying applications
When you deploy a *-ds.xml file to the deploy directory, that data source is available to
all applications deployed to the application server. You can also package the *-ds.xml
file with your application. Let’s look at how to package a data source in an EAR file as
an example.
PACKAGING A DATA SOURCE IN AN EAR FILE

In chapter 7, we describe how to package web applications and EJBs into an EAR file.
You can also place the *-ds.xml file in the EAR file.

 For example, assume that the web application is packaged in inventory.war, and
the EJBs are packaged in inventory.jar. You could place those archives and the data
source descriptor into a single EAR file that has the contents illustrated in figure 3.5.

 In addition, because the *-ds.xml file is located within the
package, you can also place the JAR file for the JDBC driver
there. If you add a class loader repository to the EAR file
descriptor, then only this application would have access to
the JDBC driver.

 The application.xml file enumerates the archives pack-
aged within the EAR file, but it’s a standard Java EE descriptor
and, because data source descriptors aren’t part of standard
Java EE, they can’t be referenced in that file. Instead, you use
a META-INF/jboss-app.xml file which references the data
source descriptor, as follows:

<!DOCTYPE jboss-app PUBLIC "-//JBoss//DTD J2EE Application 1.4//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-app_4_0.dtd">
<jboss-app>
 <module>
 <service>inventory-ds.xml</service>

jboss.jca:name=XXX,
service=XATxCM

Manages the connection manager, which is responsible for
the connection pool. You can use this MBean to manage
various aspects of distributed transactions, such as the distrib-
uted XA resource transaction timeout value. Created only for
<xa-datasource>.

jboss.jca:name=XXX,
service=NoTxCM

Manages the connection manager, which is responsible for the
connection pool. Created only for <no-tx-datasource>.

jboss.jca:name=XXX,
service=ManagedConnectionFactory

Manages the connection factory, which creates database
connections.

jboss.jca:name=XXX,
service=ManagedConnectionPool

Manages the pool of database connections. You can use this
MBean to monitor the number of active connections and even
change the min and max connection count.

jboss.jdbc:service=metadata,
datasource=XXX

You can use this MBean to change the type mapping. Doesn’t
appear if the data source is defined as a no transaction data
source.

Table 3.5 MBeans created for a data source (continued)

MBean Description

Figure 3.5 The contents
of the inventory.ear
package, showing the
embedded *-ds.xml file

67Deploying miscellaneous applications
 </module>
</jboss-app>

Now that you have the EAR file, you can deploy it and run the application, which then
uses the data source descriptor to access the database. Now let’s turn our attention to
deploying a Hibernate archive.

3.4.2 Deploying a Hibernate archive

Although accessing data in a database is an integral requirement for most applications,
you might prefer to access the data using higher-level constructs than SQL statements,
which is what you use with JDBC. Hibernate is an object-to-relational mapping (ORM)
layer that enables you to use POJOs in your application while Hibernate worries about
mapping those objects to tables in the relational database. Explaining what Hibernate
is, how it works, and how to use it is beyond the scope of this book; for that we recom-
mend Java Persistence with Hibernate by Christian Bauer and Gavin King.

 JBoss AS provides a simple mechanism to support the use of Hibernate within your
applications—the Hibernate archive. Creating a Hibernate archive is easy. It consists
of the classes for the objects you want to persist to the database, the Hibernate map-
ping files for those classes, and a Hibernate service descriptor. Note that you don’t
have to create a Hibernate archive to use Hibernate within JBoss AS; the Hibernate
archive is provided merely as a convenience if you have several applications accessing
the same data via Hibernate.

 You can create a Hibernate archive the following ways:

■ Coding a persistent object that defines the data to store in the database
■ Coding a mapping file that shows how to map the object contents to the database
■ Coding the Hibernate services file which defines the Hibernate archive

Once you have the archive, you can package and deploy it. Let’s look at the details for
each of these steps.
CODING THE PERSISTENT OBJECT

First, you need a class to persist. For an example, let’s consider a simple class that con-
tains information about a video that you might download from a video rental website,
as shown in listing 3.3.

package org.jbia.har;
public class Video {
 private int id;
 private String name;
 private int minutes;
 private float price;
 /*getters and setters*/
}

Because the getters and setters are standard (nothing special about them!), we’ve
omitted them to save space. Note that no special constructs or annotations are

Listing 3.3 Video.java

68 CHAPTER 3 Deploying applications
required; this looks like a standard JavaBean. The only special item is the id field
because, in Hibernate, all persistable classes should have an object id.
CODING THE MAPPING FILE

Next, you need to define how the contents of the Video class are mapped to a table in
the database. This is where the mapping file comes in. Listing 3.4 shows a mapping
file that corresponds to the Video class.

<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping>
 <class name="org.jbia.har.Video" table="Video">
 <id name="id" type="integer" column="id">
 <generator class="identity" />
 </id>
 <property name="name" type="string" column="name" />
 <property name="minutes" type="integer" column="min" />
 <property name="price" type="float" column="price" />
 </class>
</hibernate-mapping>

Note the description of the id field. Setting the generator class to identity means
that the database automatically assigns the object id when the object is persisted, using
the database’s built-in identity capability. This works for databases like MySQL. For
databases that support a sequence column, you use a class value of sequence instead.
Note the following example:

 <id name="id" type="integer" column="id">
 <generator class="sequence" />
 </id>

 For various other possible values for the generator class, refer to the Hibernate
documentation for details.
CODING THE HIBERNATE ARCHIVE CONFIGURATION FILE

Finally, you need a Hibernate archive configuration XML file to define the Hibernate
archive. Listing 3.5 shows the XML for the video example.

<hibernate-configuration
 xmlns="urn:jboss:hibernate-deployer:1.0">
 <session-factory
 bean="jbia.har:app=Video"
 name="java:/hibernate/jbia/VideoSF">
 <property name="datasourceName">

➥ java:/jdbc/deploymentDS</property>
 <property name="dialect">

➥ org.hibernate.dialect.MySQLDialect

➥ </property>
 <property name="hbm2ddlAuto">

Listing 3.4 Video.hbm.xml

Listing 3.5 video-hibernate.xml

B
C

D

E

F

69Deploying miscellaneous applications
➥ create-drop</property>
 <property name="showSqlEnabled">

➥ true</property>
 <depends>jboss:service=Naming</depends>
 <depends>jboss:service=TransactionManager

➥ </depends>
 <depends>jboss.jca:name=jdbc/deploymentDS

➥ ,service=DataSourceBinding</depends>
 </session-factory>
</hibernate-configuration>

This descriptor creates an MBean, in this case named jbia.har:app=Video B. You
can use any name that you like for the MBean, provided that it follows MBean naming
conventions and is unique among all deployed MBeans.

 The name attribute identifies the JNDI name for the Hibernate session factory C.
The client uses this name to look up the session factory to work with persistent
objects.

 The example references the data source D created in the previous section. There-
fore, a Hibernate archive isn’t a replacement for a *-ds.xml file; it builds on it. Because
that data source uses the MySQL database, we identify it as such in the dialect prop-
erty E. The Hibernate documentation lists the various dialects that are available;
there’s one for almost every available relational database.

 The create-drop setting for Hbm2ddlAuto F indicates that Hibernate automati-
cally creates the tables described by the mapping files and drops any tables found in
the database that aren’t in one of the mapping files. This is a feature that would be
used in a development environment, but not with a production database. The Hiber-
nate archive deployer automatically scans the Hibernate archive looking for mapping
files, *.hbm.xml; you don’t have to explicitly identify those files. The Hibernate docu-
mentation describes the various other settings for the Hbm2ddlAuto attribute.

 The attributes used in this example aren’t the only possibilities. Many Hibernate
properties have corresponding MBean attributes; the JBoss AS documentation has a
table containing this information. Some of the Hibernate properties are handled in
special ways; those properties and their special handling are provided in table 3.7.

Table 3.6 Hibernate properties that are handled specially

Hibernate property MBean attribute Special handling

hibernate.cache.
provider_class

CacheProviderClass If not specified, defaults to
org.hibernate.cache.
HashtableCacheProvider

hibernate.transaction.
flush_before_completion

-none- Always set to true

hibernate.transaction.
auto_close_session

-none- Always set to true

70 CHAPTER 3 Deploying applications
Refer to the Hibernate documentation for details regarding what these settings mean.
Now that you have all the required files, you’re ready to create the Hibernate archive.
PACKAGING THE HIBERNATE ARCHIVE

Compile the Java source file(s) and place them into an archive
file, named video.har, as shown in figure 3.6. Note that the
archive uses the extension .har. To build such an archive, you
can use the JAR utility and name the resulting file video.har.

 The mapping file, Video.hbm.xml, must have the same
base filename (Video in this example) as the class file and must
be in the same directory as the class file. You can also include
helper classes, if required; but don’t provide a mapping file for
any class that’s not persistent.
DEPLOYING THE HIBERNATE ARCHIVE

You can deploy the Hibernate archive by copying it to the deploy directory, making
the Hibernate archive an application (based on our loose definition of an applica-
tion). And like other applications, you can deploy it as an archive file or an exploded
directory. Once deployed, any other application deployed to the application server
can access the persistent objects defined by the Hibernate archive.
CODING THE HIBERNATE CLIENT

As we mentioned earlier, the client uses the JNDI name to look up a session factory. From
there, it can open a Hibernate session and use that session to manipulate persistent
objects. Once the client is done, it should close the session to free it up for other clients.

 Listing 3.6 shows code that can be used to look up the session factory and create
the session.

import javax.naming.InitialContext;
import org.hibernate.SessionFactory;
import org.hibernate.Session;
…
 InitialContext ctx = new InitialContext();
 SessionFactory hsf = (SessionFactory)
 ctx.lookup("java:/hibernate/jbia/VideoSF");
 Session hs = hsf.openSession();
 try {
 /* do something with hs */

hibernate.connection.
agressive_release

-none- Always set to true

hibernate.connection.
release_mode

-none- Always set to after_statement

Listing 3.6 Look-up of Hibernate session

Table 3.6 Hibernate properties that are handled specially (continued)

Hibernate property MBean attribute Special handling

B

C
D

Figure 3.6 The contents
of the video.har archive

71Deploying miscellaneous applications
 } finally {
 hs.close();
 }
…

This Hibernate client is an application deployed to the application server; hence, no
properties need to be used to obtain the initial JNDI context B. The client uses the JNDI
name specified in the hibernate-services.xml file to look up the session factory C. The
client then opens a session D, does some work, and then closes the session E.

 Once you have the Hibernate session object, you use it as you would in a normal
Hibernate program. For example, the following code would get a list of all videos,
ordered alphabetically by name:

import org.hibernate.Query;
import java.util.List;
…
 Query q = hs.createQuery("from org.jbia.har.Video order by name");
 List l = q.list();
…

And the following code would create a new video and store it in the database:

Video video = new Video();
video.setName("Monty Python and the Holy Grail");
video.setMinutes(91);
video.setPrice(14.99f);
hs.save(video);

The above client code could appear in an EJB stateless session bean, and that bean could
be invoked from a servlet. In chapter 7, we describe how to package web applications
and EJBs into an EAR file. You can also place a Hibernate archive into an EAR file.
PACKAGING A HIBERNATE ARCHIVE IN AN EAR FILE

Packaging a Hibernate archive within an EAR file is similar
to doing the same with a data source. For example, assume
that the web application is packaged in video.war, and the
EJBs are packaged in video.jar. You can place those archives
and the Hibernate archive into a single EAR file, which has
the contents illustrated in figure 3.7.

 The application.xml file is a standard Java EE descrip-
tor, and because Hibernate archives aren’t part of standard
Java EE, they can’t be referenced in that file. Instead, you
use a META-INF/jboss-app.xml file to reference the Hiber-
nate archive, as follows:

<!DOCTYPE jboss-app PUBLIC "-//JBoss//DTD J2EE Application 1.4//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-app_4_0.dtd">
<jboss-app>
 <module>
 <har>video.har</har>
 </module>
</jboss-app>

E

Figure 3.7 Contents of
the video.ear package
containing a Hibernate archive

72 CHAPTER 3 Deploying applications
Now that you have the EAR file, you can deploy it and run the application, which then
uses the Hibernate archive to access the persistent objects.

3.5 Summary
In this chapter, you learned how to deploy applications, both business applications
and services, to the application server. You found out that you could package an appli-
cation as either an archive file or exploded directory. You became acquainted with the
various application types and found out that the applications types are deployed in a
specific order.

 You should also have a basic understanding of how the application server loads
classes and how you can scope the class loading to avoid conflicts between different
versions of class libraries. You’re now prepared to handle many of the common
deployment errors, such as a class not found or class cast exception, or to deal with
errors that result if you have a duplicate JAR file.

 As an added bonus, you also found out about configuring data sources and Hiber-
nate archives. Configuring data sources is a topic that we return to several times in the
remaining chapters of this book because almost anything of interest done with an
application server involves a database.

 What we’ve given you in this chapter is the equivalent of us telling you that, in
order to turn your new house into a home, you have to unload the moving van (or
your buddy’s pickup truck) and bring the furniture into the house. You might have
even figured out that certain things go into certain rooms.

 But we’ve not yet covered the equivalent of how to turn each room into a func-
tional and inviting area of the house. That’s what we get into in the next part of the
book; we discuss specific types of applications and how to configure them for use with
the application server. We tackle this job one room—we mean application type—at a
time. But before we get there, we need to cover one more global topic that we return
to in various chapters: security.

3.6 References
JBoss AS documentation—http://www.jboss.org/file-access/default/members/jbossas/freezone/

docs/Server_Configuration_Guide/beta500/html/index.html
jarFinder utility—http://www.isocra.com/articles/jarFinder.php

http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta500/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta500/html/index.html
http://www.isocra.com/articles/jarFinder.php

Securing applications
Security is an important part of most enterprise software applications because sys-
tem vulnerabilities and loss of sensitive data can be costly. Security can be compro-
mised in many ways: unauthorized users may access your application’s data;
someone may intercept a message being transmitted between two users; or hackers
may expose vulnerabilities in your network or application server, giving them access
to run commands on your OS.

 The two main aspects to security are securing access to information inside of
your application and securing access to the environment in which your application
runs. Hackers could go through your application to access information or execute
malicious code, or they could access the OS on which your application runs. Secu-
rity must be put into place to protect both application data and the environment in
which your applications are running.

This chapter covers
■ Fundamentals of security
■ Dynamic login configuration
■ Secure communication
■ Public-key certificates
■ JBoss login modules
73

74 CHAPTER 4 Securing applications
 Chapter 15 discusses various configuration and environment-related topics related
to securing your application server and the surrounding environment. Other chapters
in the book also (tangentially) discuss topics related to application server security.
Table 4.1 summarizes the sections where we talk about application security for the dif-
ferent components and resources available in the application server.

NOTE Another security concern in application security is the ability to track and
monitor user operations for accountability and auditing purposes. For
example, in a payroll system, you may want to keep a log of user actions
that result in a salary adjustment and make sure that you can keep track
of who authorized each salary change. Security auditing and accountabil-
ity is a large topic and isn’t covered in this book.

In this chapter, we cover the fundamental aspects of application security including
authentication, authorization, and secure communication. We also discuss JBoss AS’s
security implementation, called JBoss SX, and show how to configure it. Finally, we talk
about the various JBoss SX security modules, which enable you to read security data
from different sources such as a database or a Lightweight Directory Access Protocol
(LDAP) server. Future chapters will build on this chapter to show how to enable secu-
rity in web applications, EJB applications, and for JMS.

 Let’s explore some of the fundamentals concepts of application security.

4.1 Understanding security
To better understand the topics related to application security, we examine an enter-
prise application that makes use of authentication, authorization, and secure commu-
nication. After giving you a high-level overview of these security concepts, we dig
further into authentication and authorization, deferring the discussion on secure
communication until section 4.2 because that topic is more involved. After talking
about authentication and authorization, we show how to configure security in JBoss AS
and how to enable logging. Let’s start with the overview.

Table 4.1 A summary of where we discuss the authentication, authorization, and secure
 communication for each of the major Java EE component technologies

Technology Authentication Authorization
Secure

communication

Fundamentals 4.1.2 4.1.3 4.2

Web 6.2 and 6.5 6.3 6.4 and 6.5

EJB 7.8.3 7.8 7.8.4

Messaging 8.5.2 8.5.2 8.5.7

Web Services 9.4 9.4 9.5

Portlets 11.4 11.4 Not covered

75Understanding security
4.1.1 Understanding application security

To understand how authentication, authorization, and secure communication fit into
an enterprise application, let’s look at an example of a web-based retail banking appli-
cation. Figure 4.1 shows a typical request flow through the application.

 Most people have accessed a web-based bank before, so this shouldn’t look too
unfamiliar. In the diagram, we have a bank customer (let’s call her Melissa) who’s try-
ing to access her bank account through her bank’s secure Java EE-enabled website. In
order for customers to be able to log into the bank’s website without worrying about
phishing schemes or man-in-the-middle attacks, the bank has purchased a secure pub-
lic-key certificate from a trusted certificate authority (CA). Melissa accesses the bank web-
site and clicks on a link that should take her to her account summary B. This link
might be something like https://www.jbossbank.com/acctSummary.

 Because the page is accessed via a secured protocol (HTTPS), the server sends its
secure certificate to Melissa’s web browser. Melissa’s browser, like all major browsers,
has a list of well-known certificate authorities. On receiving the bank’s certificate, her
browser turns around and asks the trusted certificate authorities if the certificate
belongs to the bank C. Assuming that one of the certificate authorities acknowledges
the authenticity of the bank’s certificate, Melissa’s browser tries to forward her to the
account summary page she originally requested. As far as Melissa is concerned, this all
happens behind the scenes. She can now trust that she’s accessing her bank and that
nobody can intercept her communication with her bank. Also, as long as she accesses
the bank over the secure protocol, all her communications are transferred over a
secure channel.

Figure 4.1 Multitier web application that
utilizes authentication, authorization, and
secure communication

76 CHAPTER 4 Securing applications
Now that Melissa knows that she can trust the bank, the bank needs to know if it can
trust her. The URL for the account summary page is secured with form-based authenti-
cation. Users also must be a part of the AccountHolder role before accessing the page.
Before Melissa can access the account summary page, her request is intercepted by
the JBoss Web Server web container. The container realizes that the URL that she’s
accessing is secured, so it checks with the security framework D to see if Melissa is
already logged in. After realizing that she’s not, a login form is sent back to Melissa,
prompting her for her username and password.

 When Melissa types in her credentials and submits the form, the web container
receives the form submission and passes Melissa’s credentials to the application server’s
security framework D. The security framework accesses security information from a
database E, which it queries to determine whether or not Melissa can access to the
resource she’s requesting. First, the security framework should authenticate Melissa, com-
paring the password she supplies against a known password to see if she should be
granted access to the system at all. Then, the security framework should authorize Mel-
issa, determining if her username is associated with a role that can access the resource.

 Everything matches up, so the security framework returns control back to the web
container. Now that Melissa’s credentials have been verified, the web container for-
wards her request to the resource associated with the URL for the account summary.
The account summary page is implemented as a servlet. In order for the servlet to ren-
der Melissa’s account summary information, it needs to access her account informa-
tion. The servlet makes a call to the getAccountSummary(User u) method on a session
EJB called Account, which runs in the EJB container F. Because the EJB container
runs locally, the servlet automatically propagates the security credentials.

 Like the servlet, this EJB method only allows access to users with the AccountHolder
role. The EJB server accesses the JBoss SX security framework G to determine if Melissa
is authenticated and authorized to access the resources. Again, access to the EJB
method succeeds, and Melissa’s account information loads from the application data-
base H. After the account summary loads, control returns to the servlet, which renders
the output and sends it back to Melissa, still over a secure channel.

 The three main areas of application security that we see here are authentication,
authorization, and secure communication. In this section, we discuss authentication
and authorization in more detail. We also discuss how to configure JBoss SX and how
to enable security logging. Secure communication requires more discussion and is
covered in more depth in section 4.2. Let’s take a closer look at authentication.

4.1.2 Understanding authentication

Authentication is the process by which a system verifies the identity of a user. In the
example, when Melissa tries to access her bank’s website, the site asks her for her user-
name and password. This procedure allows the site to authenticate her as a valid user.
But humans aren’t the only ones whose identities are validated by software applica-
tions; programs can also try to authenticate against an application. In security par-
lance, principal refers to either a human user or a machine that’s trying to prove its

77Understanding security
identity on another system. A principal provides one or more forms of identification
known as credentials. Possible credentials include passwords, certificates, biometric
data, smart cards, physical tokens, or any other reliable form of identification.

 In figure 4.2, we show a user named Joe trying to access a web resource. He pro-
vides his username and password. The server calls the JBoss SX framework to authenti-
cate the user. The JBoss SX framework then tries to load Joe’s password from a security
data source and compare it to the password he provided. The security framework
doesn’t authenticate the user if his username doesn’t exist in the data source or if his
password doesn’t match the one in the data source.

 Security data can be kept in different data sources, so JBoss SX has different login
modules that can read security information from different locations such as a database
or an LDAP server. We discuss the different login modules that are available in JBoss
SX in section 4.3.

 Many cryptographic protocols provide both clients and the server with the ability
to authenticate each other by using public certificates as a credential. We give you an
overview of how this works when we discuss secure communication in section 4.2.

 Now, let’s take a closer look at authorization.

4.1.3 Understanding authorization

Authorization is the process of verifying that a principal has sufficient privileges to
access an application resource. For example, a user may have access to a document
management system but may not have access to look at particular documents put into
the system by other users. Authorization is often achieved by assigning one or more
roles to a principal and then associating one or more roles with a component or
resource that a principal might want to access. When the principal tries to access the
component, the system looks at the roles allowed to access the component and the
roles assigned to the principal. If the principal has one of the roles assigned to the
component, then he can access the component; otherwise, the principal can’t access
the component. This process is called role-based authorization.

 Figure 4.3 shows how authorization works when our friend Joe tries to access the
administrator page on the web application he’s using.

Figure 4.2 The application
server authenticates a
principal when it tries to
access a secured resource.

78 CHAPTER 4 Securing applications
Joe is trying to access the administrator page, which is configured to require a role of
admin. The web container asks the JBoss SX login module whether Joe (who has already
been authenticated) can access the page. The login module goes to the authorization
data source, loads all of Joe’s roles, and then asserts that one of those roles is admin.

 Java EE defines declarative, role-based authorization for standard component tech-
nologies such as servlet, JSP, and EJB. Declarative authorization means that you can
assign roles to components via configuration without the need to write any code. As
you’ll learn in chapter 7, access to EJB methods is restricted by roles defined in either
annotations or a deployment descriptor. Web applications can define role access for
particular URLs in deployment descriptors as well, as we discuss in chapter 6.

 There are certain situations where role-based security doesn’t cut it. This fact
becomes evident when the security you want to apply depends on the context of the
request that the user sends. Applying security based on information in the request is
often called context-based security, or programmatic security. For example, you want to
allow a bank employee to enter deposits under $10,000 dollars, but anything over
$10,000 would require manager’s approval. This type of security often involves writing
code and is considered part of the business functionality of your software. Unfortu-
nately, there’s a lot of information to cover on role-based security, so we don’t discuss
context-based security. You can implement context-based security in several ways for
each of the different component models. For EJBs, you can use JBoss SX security prox-
ies or EJB3 interceptors. For web applications, you can use servlet filters, custom
valves, or interceptors.

 Now that you have some background on how authentication and authorization work,
let’s discuss how you can configure applications to enable these aspects of security.

4.1.4 Configuring security

Each Java EE component or resource has a different mechanism for defining security.
For example, you can use a web application’s standard deployment descriptor to
define which authentication policy should be used and to secure individual URLs by
defining roles that have permission to access them. This definition of what method to
use and what should be secured is defined in each component’s standard deployment

Figure 4.3 The steps
involved in authorizing a user

79Understanding security
descriptor. But, the Java EE specification doesn’t specify the underlying security imple-
mentation; it doesn’t describe where the security data should be kept, how it should
be retrieved, or how it should be validated. Each application server vendor has to cre-
ate its own security implementation and allow programmers to configure and use it
through vendor-specific deployment descriptors.

 JBoss AS’s security implementation is called JBoss SX, which builds on top of the
Java Authentication and Authorization Service (JAAS) to secure all the Java EE tech-
nologies running in the application server. The relationships between the major com-
ponents of the security framework are shown in figure 4.4.

When a request comes into JBoss AS, the targeted application component or
resource—the web application, EJB application, JMS queue/topic, or whatever it may
be—doesn’t need to know where the underlying security data exists or how it’s
accessed. The component request is routed to a JBoss SX component called a security
domain, an abstraction used to secure all requests made to a component. The security
domain performs any necessary security checks and notifies the component whether
the user can proceed or not. The security domain knows how to use one or more
login modules to load security data from a data source.

 Security domains are configured at the server level and can be used by any compo-
nent within the server. Security domains are bound into JNDI when the server starts;
pointing to the security domain’s JNDI context maps a component to a security
domain. You can add or modify existing security domain definitions within the
server/xxx/conf/login-config.xml file.

 Listing 4.1 shows an example of a security domain definition in this file.

<application-policy name="jmx-console">
 <authentication>
 <login-module
 code = "org.jboss.security.auth.spi.UsersRolesLoginModule"

Listing 4.1 A security domain definition in the login-config.xml file

Figure 4.4 The security domain and login modules are the major components of the security
framework.

B

C

80 CHAPTER 4 Securing applications
 flag = "required">
 <module-option name="usersProperties">
 props/jmx-console-users.properties
 </module-option>
 <module-option name="rolesProperties">
 props/jmx-console-roles.properties
 </module-option>
 </login-module>
 </authentication>
</application-policy>

The application-policy block B defines a security domain. The name attribute
specifies the name of the security domain. JBoss SX uses this name to generate the
JNDI context with which it binds the security domain into JNDI. In the case of this
example, the name attribute is set to some-domain, so the JNDI context associated with
this security domain definition would be java:/jaas/jmx-console. All security
domains are bound under the java:/jaas namespace. (As we discuss in the appendix
A, the java: namespace is local to the server.)

NOTE When you define a security domain in the login-config.xml file, JBoss SX
doesn’t automatically bind the security domain into JNDI. JBoss SX only
binds a security domain into JNDI after you deploy an application that
references the security domain.

You can use the login-module element in the application-policy configuration to
point to one or more login modules. In the example configuration, you point to a
login module of type UsersRolesLoginModule C. This login module loads security
information from properties files on the filesystem. A typical production system uses a
database or an LDAP server to hold security information. JBoss SX provides several
login modules that support different backend data sources. We go through the differ-
ent login modules available with JBoss SX in section 4.3.

 You’ve learned how to configure security by adding a domain to a shared configu-
ration file. Some people prefer to have the security configuration for their applica-
tions reside in the application archives themselves. Let’s see how this can be done.

4.1.5 Dynamic login configuration

JBoss SX provides a feature called dynamic login configuration that allows you to define
security in your application archive rather than in the server’s login-config.xml file. To
enable this feature, you have to create and deploy an MBean for the service to the
server’s server/xxx/deploy directory. The service will look like that shown in listing 4.2.

<server>
 <mbean code="org.jboss.security.auth.login.DynamicLoginConfig"
 name="jboss:service=DynamicLoginConfig">
 <attribute name="AuthConfig">
 dynamic-login-config.xml
 </attribute>
 <depends optional-attribute-name="LoginConfigService">

Listing 4.2 The MBean service definition for the dynamic login configuration service

C

B

81Understanding security
 jboss.security:service=XMLLoginConfig
 </depends>
 <depends optional-attribute-name="SecurityManagerService">
 jboss.security:service=JaasSecurityManager
 </depends>
 </mbean>
 </server>

You can name this file whatever you want, as long as you suffix it with -service.xml (for
example, dynamicloginconfig-service.xml) so that the appropriate JBoss deployer
picks it up and deploys it as an MBean service. You use the AuthConfig attribute B to
specify the name of the file (within your archive) that will contain your security domain
definitions. The format of this file is exactly the same as the login-config.xml file we dis-
cussed in the last section, so you can copy that into your application archive and whittle
it down. In listing 4.2, we configure the dynamic-login config service to look for the
dynamic-login-config.xml file. If this were a WAR file, an EAR file, or any other archive,
JBoss AS would look for it in the META-INF directory of that archive. You enable security
for your application and point it to a security domain defined in this file.

 The file that points to the AuthConfig attribute has to be available in the root of
your application’s class path. If you have a WAR file, you have to wrap it in an EAR file
to use dynamic login configuration because the class path for a WAR file isn’t accessi-
ble from outside the WAR file. You can create a JAR file in the EAR (maybe calling it
resource.jar or dynamic-login.jar) that contains this file and any other resource file
you may need when configuring dynamic login. Then you configure your applica-
tion.xml file to know about the JAR file.

 Now that you’ve learned about configuring security domains, we’ll show how to
enable logging for the various security services.

4.1.6 Logging security on the server

By default, security logging is minimal. If you want to log more security information for
debugging purposes, you can add the following to your server/xxx/conf/jboss-log4j.
xml file:

<category name="org.jboss.security">
 <priority value="TRACE" class="org.jboss.logging.XLevel"/>
</category>
<category name="org.jboss.web.tomcat.security">
 <priority value="TRACE" class="org.jboss.logging.XLevel"/>
</category>
<category name="org.apache.catalina">
 <priority value="DEBUG"/>
</category>

Remember to comment out the threshold parameter in the appender that you want
the logging messages to appear in. We discussed logging in more detail in chapter 2.
In addition to setting the log4j logging, you can set the following JVM property when
you start JBoss AS to get additional logging related to SSL:

-Djavax.net.debug=ssl

82 CHAPTER 4 Securing applications
Now that you have a general understanding of what authentication and authorization
are and how JBoss SX enables Java EE security, let’s take an in-depth look at secure
communication.

4.2 Using secure communication
We often need to send data over an open network (for example, the internet), but we
should be aware of three aspects of secure communication: confidentiality, data integrity,
and source integrity. Confidentiality refers to protecting a sent message from being read
by anybody else besides the intended recipient(s). To ensure confidentiality, the
sender often encrypts messages that the recipient then decrypts. Data integrity refers
to a message recipient’s confidence that the message she receives wasn’t manipulated
while in transport. Encrypted communication protocols can also ensure data integrity.

 Source integrity gives assurance to a message recipient that the message she
receives is indeed from the sender that she thinks she’s communicating with and not
somebody else who’s posing as the sender. Source integrity can be protected by using
a reliable third party that assigns certificates to different people and organizations. A
person who wants other people to trust him can obtain a certificate and send it to
other parties who can verify the certificate owner’s identity by asking the trusted third
party, which is usually a certificate authority.

It’s important to remember that the source that has integrity may be a
machine, meaning that a non-trusted user on a trusted machine could
gain access to things that he shouldn’t.

Secure protocols such as Transport Layer Security (TLS) or Secure Sockets Layer (SSL)
can be used to provide these three aspects of secure communication. These protocols
use a combination of public and private key cryptography and digital certificates. In this
section, we discuss mechanics and configuration behind these forms of cryptography.

NOTE TLS is a newer specification that’s meant to be a replacement for SSL.
TLS 1.0 is similar to SSL 3.0. TLS is starting to gain in acceptance and usage,
but SSL is still a more dominant and well-known protocol. Because more
people recognize the initialism SSL, from here on, we refer to both SSL
and TLS as SSL.

Let’s start by talking about the two major categories of encryption: symmetric encryp-
tion and asymmetric encryption.

4.2.1 Understanding symmetric and asymmetric encryption

Encryption is easier to understand when you consider the analogy of a lock and key.
Let’s say that you have a secret message that you want to mail to a friend. You put the
message in a box that can be secured with a padlock. If you and your friend both have
keys to the same lock, you can put the lock on the box, lock it, and send it to your
friend. After receiving the box, she can open it with her key. This is how symmetric
encryption works. A message is encrypted with a secret key and decrypted with the same
key. As long as the key isn’t compromised, the two parties can communicate securely.

WARNING

83Using secure communication
Figure 4.5 illustrates that with symmetric encryption, both parties participating in the
communication use the same secret key.

 The difficulty with private key encryption is the initial distribution of the shared
secret key. For both parties to initially know about the key, you have to share the key in
an insecure fashion. But a slightly different strategy makes secure communication pos-
sible without an initial shared key being exchanged.

 Returning to our analogy, let’s say that your friend has a special lock with two keys;
each key can lock the padlock, but the padlock can only be unlocked with the oppo-
site key. Now your friend makes copies of one of the keys (her public key) and gives
them out to anyone and everyone. Whoever wants to send her a secret message can
put the message in the box and use the public key to securely send the message. Once
she receives the message, she uses the key that she didn’t distribute (her private key)
to unlock the padlock.

 Public key encryption, or asymmetric encryption, uses a pair of mathematically associ-
ated keys. After a message is encrypted with one, it can only be decrypted with the
other. It’s also infeasible to derive one key using its counterpart, so having the public
key can’t help a hacker ascertain the private key. Figure 4.6 shows you the sequence of
events that occurs when two parties communicate using public key encryption.

 Asymmetric encryption is convenient because you don’t have to worry about distrib-
uting a shared key; but, unfortunately, it’s much slower than symmetric encryption.
Many secure protocols (such as SSL) use public key encryption to establish a secret key

Figure 4.5 Symmetric encryption uses a single secret key that both parties use to
encrypt and decrypt text.

Figure 4.6 Asymmetric encryption involves two keys:
a public key distributed to other parties for the
encryption of messages and a private key used to
decrypt messages encrypted with the public key.

84 CHAPTER 4 Securing applications
when two users first negotiate a conversation, and then they use the secret key to con-
tinue the communication using symmetric encryption.

NOTE A private key is part of an asymmetric key pair. The private key should never
be distributed or shared, but its public key counterpart can be shared with
anybody. A secret key is used in symmetric encryption and is shared
between two users. Symmetric encryption is also (confusingly) called pri-
vate key encryption, even though the key that it uses is called a secret key and
the name private key already has meaning in asymmetric encryption.

You’ve learned how symmetric and asymmetric encryption work, but secure protocols
can do more than encrypt messages; they also enable source authentication.

4.2.2 Understanding certificates and source authentication

Consider another analogy. Let’s say that you get a package in the mail from your bank
with an unlocked padlock and a key. It’s one of those special public keys that can be
used for asymmetric encryption. The bank asks you to fill out some forms with per-
sonal information, lock it in the box, and send it to them. Assuming that this is a com-
mon way to send secure correspondence to your bank, you compile the information,
take the locked box down to the post office, and send it to the return address that was
on the package that you received. You’re feeling pretty good about yourself because
you sent your message securely.

 A few days later, you go to check your account balance and see that your account is
empty. What happened? The letter you received wasn’t from the bank. A scammer
conned you out of your money using a so-called social hack. The letter and lockbox you
received looked almost identical to one you usually get from your bank. You trusted
that the address that you were sending it to was your bank’s, but it wasn’t.

 Public keys are great, but the person sending an encrypted message needs to be
certain that he is sending his message to the right person. He needs a way to ensure
that a public key he received is from the person he thinks it’s from. In addition to
encrypting a message, the SSL protocol supports authentication of both the client and
the server through use of public key certificates.

 A public key certificate is a digital certificate that consists of some information about
the certificate holder’s identity and a public key. To verify that the public key belongs
to the user whose identity is on the certificate, a CA signs the certificate. For example,
when you try to access your bank’s website to check your account balance, your web
browser obtains the bank’s certificate and verifies its signature against the CA that
signed the certificate. If the CA verifies that it has that particular certificate in its data-
base, then you can rest assured that the certificate that you received isn’t a false certif-
icate that was created under the bank’s name.

 There are many publicly available CAs that charge individuals and enterprises for
public key certificates. The main three are VeriSign, Thawte, and Entrust. All major
web browsers ship preconfigured with a set of trusted CAs. Most JREs also ship with a
list of trusted CAs. Table 4.2 shows you where to find the list of trusted CAs in differ-
ent applications.

85Using secure communication
If you want a signed certificate, you must first generate a self-signed certificate and use
it to create a Certificate Signing Request (CSR). The CSR (along with a few hundred
dollars) is then sent to the CA who validates your identity and then sends back a
signed certificate.

 But, certificates don’t always have to be signed by a third-party CA. Developers
often create self-signed certificates for use in their development environments. An
organization can also act as its own CA. The certificate is often signed by the organiza-
tion, which runs its own CA server. To authenticate a certificate, the client has to rec-
ognize the private CA. A web client can add the enterprise’s private CA to the web
browser’s list of authorities to authenticate the server. But with a Java-based client or
server, either the cacerts file must be modified, or the runtime must use an alternative
file. We talk about these options in section 4.2.4.

 Now that you have a good understanding of how encryption, certificates, and cer-
tificate authorities work, let’s look at how you can create your own certificates and get
them signed.

4.2.3 Creating and signing certificates

Most JVMs ships with a command-line tool called keytool. This tool can be used for the
following:

■ Generating and storing self-signed public/private key pairs
■ Generating CSRs
■ Importing public certificates that you’ve had signed by a CA
■ Importing public certificates for some other party that you trust

As figure 4.7 shows, keytool stores public/private key pairs and certificates inside of
keystores. You can think of a keystore as a container (or a keychain) for keys. As you’ll

Table 4.2 Where to find the trusted CAs in different applications

Application Where the CA information is kept

Firefox 1.0 Tools > Options > Advanced > Certificates > Manage Certificates > Authoritiesa

Firefox 1.5 Tools > Options > Advanced > Security > View Certificates > Authoritiesa

Firefox 2.0 and 3.0 Tools > Options > Advanced > Encryption > View Certificates > Authoritiesa

Internet
Explorer 6

Tools > Internet Options > Content > Certificates > Trusted Root Certification
Authorities

Internet
Explorer 7

Tools > Internet Options > Content > Certificates > Trusted Root Certification
Authorities

Java program [JRE HOME]/lib/security/cacertsb

a. The menu items may be different on different platforms. For example, on Mac OS, you go to Firefox > Preferences
instead of Tools > Options.

b. This isn’t a plain-text file. To access the certificates in this file, you have to use a tool called keytool. We talk about this
in section 4.2.3.

86 CHAPTER 4 Securing applications
learn when we discuss encryption throughout the book, different JBoss AS services uti-
lize keystores to access keys and certificates.

 You can use keytool from any directory if your system’s PATH environment variable
contains the bin directory under the root of your JDK installation. Let’s look at some
examples of common things that you can do with keytool. If you want to create a new
private key with a self-signed certificate, you run the following command:

keytool -genkey -alias mykey -keyalg RSA -validity 3650 -keystore
➥ mykeys.keystore

When you run this command, keytool prompts you for a password for the keystore,
several pieces of identifying information about you and your organization, and a pass-
word for the key that you want to create. This command generates a public/private
key pair using the RSA algorithm (named using the the last initials of the three guys
who invented it) that expires after 10 years with an alias of mykey in a keystore called
mykeys.keystore. As you see in figure 4.7, the alias is a logical name that provides an
easier way to access the key when you try to read it out of the keystore later.

 If you don’t specify a keystore using the -keystore command-line switch (mykeys.
keystore in this example), then keytool uses a default keystore called .keystore in the
home directory of the user running the command. The location of the home directory
depends on the OS you’re using.

 If you want to export the CSR for the self-signed certificate you created, you issue
the following command:

keytool -certreq -alias mykey -keystore mykeys.keystore -file getMeSigned.cer

When you run this command, keytool prompts you for the keystore password. After
entering the password, keytool outputs a CSR that can be sent to a CA for signing.

Figure 4.7 A keystore can contain your
public/private key pairs, as well as other
people’s trusted public certificates.

87Using secure communication
After receiving the response from the CA, you can import the certificate into the key-
store using the following command:

keytool -import -alias mycert -keystore mykeys.keystore -file
➥ signedCertificate.cer

You can also export your certificate from the keystore if you want to distribute it using
the following command:

keytool -export -alias mykey -keystore mykeys.keystore -file mykey.cer

This command prompts you for the keystore password and then outputs your certifi-
cate, whereas the certreq command outputs a CSR.

 When you’re configuring certificates for Java applications, you often need to mod-
ify the cacerts file that we mentioned in 4.2.2.

4.2.4 Modifying the cacerts file

The cacerts file (referenced in table 4.2) that ships with the JRE contains a list of
trusted CAs. This file is a keystore that only contains public key certificates for trusted
certificates or CAs. This type of keystore is often called a truststore. If you’re running a
Java application that needs to trust a certificate authority above and beyond the ones
that come prepackaged with the JRE, you have one of two choices: use a different
truststore or modify the cacerts truststore.

 If you want to change the certificates in the cacerts file, you import certificates into
the file using the keytool command as described in the last section. For example, if
you get a self-signed certificate called server.cer for the server that you want to trust,
you might import it as follows:

keytool -import -alias myserver -file server.cer

➥ -keystore C:/jdk1.5.0_06/jre/lib/security/cacerts

The password that you use may differ between different JDKs and different versions.
For example, the cacerts file that ships with Sun’s version 1.5 JVM uses the password
changeit.

 To use a different truststore, you have to provide the following JRE arguments
when you start your Java application:

java -Djavax.net.ssl.trustStore=<file>
➥ -Djavax.net.ssl.trustStorePassword=<pass> …

The javax.net.ssl.trustStore argument should point to the file where the alterna-
tive truststore is located. The javax.net.ssl.trustStorePassword argument passes
the password into the truststore. The password for a truststore (as with a keystore)
is the password to the file that holds the certificates, not the password for the certifi-
cates themselves. Those passwords are defined when you create the certificates.

4.2.5 Understanding certificate-based client authentication

In SSL communication, the server is required to have a certificate. In typical use (as
when a user tries to access his bank’s website), the server has a certificate, but the cli-
ent doesn’t need one. Server authentication occurs when the client and server are using
SSL but only the server has a certificate. In this scheme, when a client tries to access a

88 CHAPTER 4 Securing applications
server, the client verifies the server’s certificate during the protocol-level handshaking,
as you can see in the top diagram in figure 4.8.

 SSL is capable of authenticating a client as well. Authenticating a client happens in
a mutual authentication scheme; both the client and the server must have certificates.
With mutual authentication, when a client tries to access the server, the protocol-level
handshaking forces both parties to verify one another’s certificates. In JBoss AS, SSL cli-
ent authentication can be used to authenticate clients who are trying to access either
the web container or the EJB container. For web applications, protocol-level mutual
authentication can be configured using the HTTP connector as discussed in chapter 6
(section 6.4.3). The middle diagram in figure 4.8 shows that both the client and the
server need to have certificates in order to have mutual authentication. Table 4.3 sum-
marizes the differences between server authentication and mutual authentication.

Table 4.3 The differences between server and mutual authentication

Authentication strategy
Who wants to verify the other

party’s identity?
Who needs public key?

Server authentication Client Server

Mutual authentication Client and server Client and server

Figure 4.8 The ways that
certificates can be used for
authentication

89Using secure communication
Mutual authentication isn’t commonly found in publicly accessible web sites because
all users of a website would have to create or obtain their own certificates and set them
up in their browsers. Mutual authentication is sometimes used in intranet applications
and in applications that need added assurance that requests coming into the system
originate from a safe source. For example, a bank may implement SSL mutual authen-
tication in an application that allows other banks to submit transactions over the inter-
net. Although the authentication could be done by password, the certificate gives the
bank more confidence about the identity of the client and also ensures that the infor-
mation is encrypted before it’s sent over the internet.

 Many internal corporate applications use mutual authentication to allow employees
to securely access their applications over the internet. In many cases, the company is its
own CA and assigns keys to each employee who needs access to the internal systems.

 So far, we’ve talked about mutual authentication at the protocol level, meaning
that the client and server authenticate each other using their CAs when the protocol-
level handshaking occurs. But this type of protocol authentication is different from
the application-level authentication we talked about in section 4.1.2. The server can
use the client’s certificate as a credential for application-level authentication. Building
on top of the protocol-level mutual authentication, the server can read the informa-
tion off the client certificate and compare it against its own database of users. This is
often called client-certificate authentication.

 The bottom diagram in figure 4.8 shows that client-certificate authentication
requires both the client and the server to have certificates. The diagram also shows
that the server must have a truststore that contains all the public certificates for the cli-
ents whom it wants to trust to gain access to its applications. This truststore is a secu-
rity data source that’s pointed to by a JBoss SX login module in the same fashion that
you’d point to a database or an LDAP server. We talk about the login module that you
use to configure this in section 4.3.4. You also learn how to configure client-certificate
authentication from end to end for a web application in chapter 6 (section 6.5).

 What are the tradeoffs between password-based client authentication and client-
certificate authentication? You can argue whether authenticating against information
on a certificate provides any protection over authenticating against a user-provided
password. If the client’s certificate is already available in the web browser or applica-
tion, then the server can automatically get the certificate and authenticate the user.
The user doesn’t have to stop and type in a password. Client-certificate authentication
provides you with an auto-login mechanism.

 But, replacing password-based authentication with client-certificate authentication
isn’t always a good idea. What if somebody steals the user’s computer with the certifi-
cate on it? The thief wouldn’t not need a password to gain access to the information
the true owner of the certificate had access to. What if somebody sneaks into your
office and runs a few transactions while you’re out to lunch? What if somebody hacks
into a bank’s server that has a client certificate set up to talk to another bank’s transac-
tion system? Again, the hacker would have immediate access without the need for
manual authentication. These are all considerations you have to make before choos-
ing client-certificate authentication over password-based authentication.

90 CHAPTER 4 Securing applications
 We’ve talked about how to configure security domains, and we’ve also talked about
how to create certificates. Often, you’ll need to bring these two together to create an
SSL-aware security domain.

4.2.6 Configuring an SSL-aware security domain

JBoss Web Server has built-in support for SSL through its HTTP connector, so configur-
ing SSL for web applications is relatively simple as we see in chapter 6 (section 6.4). But,
if you want to authenticate clients based on their certificate information as we discuss
in chapter 6 (section 6.5), then you’ll have to define an SSL-aware security domain.

 Unfortunately, you can’t specify an SSL-aware security domain in the login-config.
xml file as we did for non-SSL security domains in section 4.1.4. To enable an SSL-aware
security domain, you must also define an MBean instance of JaasSecurityDomain that
points to a truststore. Figure 4.9 shows you the relationship between the JassSecurity-
Domain MBean and the security domain defined in the login-config.xml file.

To define the JassSecurityDomain MBean, create a file that ends in -service.xml and
put it in the server/xxx/deploy directory. We talked about how services are defined
using *-service.xml files in chapter 2 (section 2.2). Listing 4.3 shows what the contents
of this file look like.

<server>
 <mbean code="org.jboss.security.plugins.JaasSecurityDomain"
 name="jboss.security:service=MySecurityDomain">
 <constructor>
 <arg type="java.lang.String"
 value="my-security-domain"
 />
 </constructor>

Listing 4.3 An SSL-aware security domain defined as an MBean

Figure 4.9 The relationship between the JaasSecurityDomain MBean, the truststore,
the security domain, and the security datastore

B

91Configuring login modules
 <attribute name="KeyStoreURL">
 ${jboss.server.home.dir}/conf/server.truststore
 </attribute>
 <attribute name="KeyStorePass">servercert</attribute>
 <depends>jboss.security:service=JaasSecurityManager</depends>
 </mbean>
</server>

The value attribute B of the constructor element is the name of the security
domain you’re defining. In this example, when the security domain is deployed to the
server, it’s bound under the java:/jaas/my-security-domain JNDI context because
of the constructor argument defined on the MBean. The KeyStoreURL C and Key-
StorePass D elements are used to define the location of the truststore and password
to the truststore, respectively.

 If you want your security domain to do authentication and authorization as well, you
still need to define a security domain (an application policy block) in your login-config.
xml file as described in section 4.1.4. The constructor argument of the security-
domain in the MBean definition and the name attribute of the application-policy ele-
ment in the login-config.xml file have to match up. To define an application policy for
the SSL-aware security domain shown in listing 4.3, you write the following:

<application-policy name="my-security-domain">
...
</application-policy>

Now that you have a better understanding of the fundamental concepts of security
and how encryption works, let’s look at how to configure specific login modules.

4.3 Configuring login modules
A JBoss SX login module knows how to access a security data source in order to load a
principal’s password and role information. This information is then used to deter-
mine if the principal should be authenticated or authorized into an application.

 Login modules are configured within security domains. In section 4.1.4, we showed
how to define security domains using the .application-policy block in your configu-
ration’s server/xxx/conf/login-config.xml file. Each security domain can have one or
more login modules. So far, we’ve only mentioned the UsersRolesLoginModule, which
provides a way to read security data from a file. Table 4.4 summarizes some of the various
login modules available in JBoss SX.

Table 4.4 Login modules that can be used when defining a security domain

Login modulea Description

BaseCertLoginModule Authenticates client certificates. Must be stacked with another
login module that does authorization.

CertRolesLoginModule An extension of BaseCertLoginModule that authenticates
against client certificates and authorizes against properties files.

C

D

92 CHAPTER 4 Securing applications
Although there are many login modules, only a handful of them are widely used, so
we focus on those. But don’t worry too much if you’re planning on using one of the
login modules not covered in this book; you should be able to configure any login
module based on the background in this section.

4.3.1 Using the file-based login module

The UsersRolesLoginModule stores username and role information in properties
files. An example application-policy definition is as follows:

<application-policy name = "my-security-domain">
 <authentication>
 <login-module
 code="org.jboss.security.auth.spi.UsersRolesLoginModule"
 flag = "required">
 <module-option name="usersProperties">
 my-users.properties

ClientLoginModule Used by standalone clients that want to log into a secure server.

DatabaseCertLoginModule An extension of BaseCertLoginModule that authenticates
against client certificates and authorizes against a database.

DatabaseServerLoginModule Loads user/role information from a database.

IdentityLoginModule A testing login module that causes all users to authenticate with
the same credentials.

LdapExtLoginModule Loads user/role information from an LDAP server (supports hier-
archical role structures).

LdapLoginModule Loads user/role information from an LDAP server (only works
with flat role structures).

RunAsLoginModule Can be stacked with other login modules to define the run-as sta-
tus that they use while they’re authenticating. Useful if you need
to call a secured EJB that’s responsible for authenticating users.

SimpleServerLoginModule A testing login module that allows any role with a null password
to authenticate.

SRPCacheLoginModule Used to authenticate users using the Secure Remote Password
(SRP) protocol.

SRPLoginModule Used by standalone clients that want to authenticate using the
SRP protocol.

UsersRolesLoginModule Loads user/role information from properties files.

a. All the login modules listed in table 4.4 are Java classes that exist in the org.jboss.security.auth.spi
package except for SRPCacheLoginModule and SRPLoginModule, which are in org.jboss.security.src.jaas, and
ClientLoginModule, which is in org.jboss.security.

Table 4.4 Login modules that can be used when defining a security domain (continued)

Login modulea Description

93Configuring login modules
 </module-option>
 <module-option name="rolesProperties">
 my-roles.properties
 </module-option>
 </login-module>
 </authentication>
</application-policy>

The usersProperties and rolesProperties options point to files that should be
placed in either the root of the application archive’s class path or in your server con-
figuration’s conf directory. The format of the file that the usersProperties option
points to should look like the following:

javid=passw0rd
joesmith=test1
janesmith=jb00sRul3z

Each line has a username and a password that are separated by an equals sign. The
format of the file that the rolesProperties option points to should look like the
following:

javid=SomeSimpleRole
joesmith=SomeOtherRole
janesmith=SomeSimpleRole,SomeOtherRole

In this file, each line has a username and a set of comma-separated roles that are sepa-
rated by an equals sign.

 If you want to associate user and role definitions with multiple security domains
that use the UsersRolesLoginModule, then you can put the common users and roles
in a pair of default files that are shared by all the security domains. These files can be
specified by the defaultUsersProperties and defaultRolesProperties module
options. As with the files pointed to by usersProperties and rolesProperties, the
default files must also be in the conf directory of the server configuration or in the
root directory of your application archive’s class path.

 Table 4.5 lists the module options that can be set for UsersRolesLoginModule.

Table 4.5 The properties that can be used with UsersRolesLoginModule

Module option Description

usersProperties The properties file that contains usernames and passwords.

rolesProperties The properties file that contains role definitions for users.

unauthenticatedIdentity The value of this option is used as the identity (principal name) for
any source that doesn’t provide any authentication information.

password-stacking Used to configure multiple login modules. See section 4.3.5.

ignorePasswordCase By default, passwords are case sensitive, but you can make the pass-
word comparison case insensitive by setting this option to true.

94 CHAPTER 4 Securing applications
This login module is often used in development and testing but isn’t typically used in
a production system. Most enterprises store their security information in a database or
an LDAP directory. Let’s look at how to configure the login module that reads security
data from a database, and then we’ll look at the one that reads security data from an
LDAP server.

4.3.2 Using the database login module

Most enterprise application programmers are familiar with relational databases, so
databases are a logical choice for storing security information. JBoss SX provides the
DatabaseServerLoginModule for the purpose of loading authentication and authori-
zation information from a database. Here’s a typical application-policy definition
using this login module:

<application-policy name = "database-domain">
 <authentication>
 <login-module
 code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
 flag = "required">
 <module-option name="dsJndiName">
 java:/OracleDS
 </module-option>
 <module-option name="principalsQuery">
 SELECT PASSWD FROM USERS WHERE USERID=?
 </module-option>
 <module-option name="rolesQuery">
 SELECT ROLEID, 'Roles' FROM ROLES WHERE USERID=?
 </module-option>
 </login-module>
 </authentication>
</application-policy>

The value of the dsJndiName module option points to the JNDI name for the data source
that contains the security information. The principalsQuery option defines the query
that the login module executes when it tries to authenticate a principal based on this
password. If this option isn’t set, the login module executes the following default query:

select Password from Principals where PrincipalID=?

The rolesQuery option defines the query that the login module executes when it tries
to authorize a principal based on her roles. If this option isn’t set, the login module
executes the following default query:

select Role, RoleGroup from Roles where PrincipalID=?

defaultUsersProperties Specifies a default users properties file shared by multiple security
domains.

defaultRolesProperties Specifies a default roles properties file shared by multiple security
domains.

Table 4.5 The properties that can be used with UsersRolesLoginModule (continued)

Module option Description

95Configuring login modules
If you override the queries using the principalsQuery and rolesQuery options, you
need to ensure the projection (the select clause) maintains the same order as the
default queries; the query variables, the column names in the database, and the table
names in the database can be whatever you want.

 You’ll notice that there’s a column called RoleGroup. A role group is a descriptive
name for the group of roles that a user belongs to. Unfortunately, Red Hat provides
no clear explanation of the purpose of this column. They merely tell you that it has to
be set to the value Roles. You can do this in several ways, but the simplest is to over-
ride the default rolesQuery with something similar to the following:

select Role, 'Roles' FROM Roles WHERE PrincipalID=?

Table 4.6 shows the options that can be used for this login module.

4.3.3 Using the LDAP login module

Although programmers are typically more familiar with databases, many enterprises
use software products that utilize LDAP for managing security information. Examples
of such systems include Microsoft’s Active Directory, Novell’s eDirectory, and Red
Hat’s Fedora Directory Server. Organizations that use these systems often piggyback
onto the security information stored in these servers, allowing them to maintain a sin-
gle standardized security model for all of their new and existing systems. Many enter-
prises use LDAP for holding authentication information and a database for holding
authorization information because LDAP can be difficult to set up and maintain.

 We approach configuring the LDAP login module from a slightly different per-
spective. Unlike the database server login module where you probably define both
the security information and the application data, you’ll likely have to access an exist-
ing security data source that someone else set up. The first order of business is to dis-
cover where the information you’re interested in is stored. In LDAP, information
about a user is stored in a user object, and information about the groups (or roles) that
a user belongs to is stored in a group object. If you can find your user object and the

Table 4.6 The options that can be used with the DatabaseServerLoginModule

Module option Description

unauthenticatedIdentity The value of this option is used as the identity (principal name) for
any source that doesn’t provide any authentication information.

password-stacking Used to configure multiple login modules. See section 4.3.5.

dsJndiName The JNDI name for the data source that contains the security
information.

principalsQuery The query to pull back the password for the principal attempting to
authenticate against the system.

rolesQuery The query to pull back the role and role group for the principal
attempting to authorize against the system.

96 CHAPTER 4 Securing applications
objects for the groups you belong to, then you should be able to configure the LDAP
login module.

 If that sounds difficult, don’t worry; it’s a little work, but it’s doable. In the follow-
ing text, we explain enough about LDAP to help you find the objects of interest and
describe some tools that can help you locate the information you need. You’ll then be
ready to configure the LDAP login module.
UNDERSTANDING LDAP

An LDAP server maintains a tree of
objects, similar to the file and directory
hierarchy found on most computers or
what’s found in JNDI. In Java, LDAP is
accessed via JNDI and represented as a
JNDI directory. The information in an
LDAP server can be considered to be in a
tree, as illustrated in figure 4.10.

 A few things to note about the tree are as follow:

■ Each node has a two-part name, separated by an equals sign. The first part is an
abbreviation for the type. Typical abbreviations include dc for domain control-
ler, ou for organizational unit, and cn for common name. The second part is a
simple name assigned to the node.

■ The root node has a multipart name. The typical name is the same as the orga-
nization’s website URL in reverse. An organization whose web site URL is
www.jbia.org would have a root as indicated in the figure. Note that the www
prefix is typically not used.

■ The full name of an object, also known as the distinguished name (DN), is its
name and all the nodes up to the root. The DN for the highlighted node is
ou=Users,ou=California,dc=jbia,dc=org. Note that the order is from leaf
node to root node.

Now that you have some knowledge of LDAP, the next thing you need is a tool that will
help you find the information you need.
SELECTING AN LDAP TOOL

When browsing LDAP for the first time, you need a GUI tool because the GUI automat-
ically performs the necessary calls to discover the contents of the directory tree. An open
source LDAP browser, JXplorer, is available from Source Forge at http://sourceforge.
net/projects/jxplorer/. This browser is written in Java, so it’ll run on any platform.

 The main benefit of using JXplorer is that you don’t have to know how to form the
necessary LDAP queries to browse the tree. But this is also one of the main detriments
because, to configure the login module, you need to know how to fashion the proper
queries. For that, a command-line tool is much better. Many LDAP implementations
come with a tool that enables you to search the LDAP directory tree. Usually the tool
is named ldapsearch. If you have such a tool available, you can use it; if not, the Sun
ONE Directory Server Resource Kit 5.2.1, which is a free download available at

dc=jbia, dc=org

ou=Californiaou=Texas

ou=Groupsou=Users ou=Groupsou=Users

Figure 4.10 Simple LDAP directory tree

http://sourceforge.net/projects/jxplorer/
http://sourceforge.net/projects/jxplorer/
www.jbia.org

97Configuring login modules
http://www.sun.com/download/products.xml?id=3f74a0db, contains an ldapsearch
tool, and is available for a wide variety of platforms. The text that follows assumes
you’re using the Sun tool; if you use a different tool, check with that tool’s documenta-
tion for usage instructions.

 If you’re using Active Directory, install the support tools that come with Windows
Server 2003. One of the support tools is called Active Directory Users and Computers,
which displays LDAP directory trees. You can find the support tools in the support/
tools directory on the CD. You can install them on Windows XP or Vista.
BROWSING THE LDAP DIRECTORY TREE

Now that you’ve assembled your tools, you’re ready to dig into the LDAP directory
tree. To get started, you need to know the following pieces of information:

■ The host name for the system running the LDAP server.
■ The port used by the LDAP server. Port 389 is the default port.
■ If the LDAP server doesn’t allow anonymous access, you’ll need an account and

password that has search and read access.
■ The DN of the root node.

You should be able to get all of this information from the network administrator
responsible for maintaining the LDAP directory tree. Whether you should bring the
bribe of a six-pack of the administrator’s favorite brew is up to you. If your company
uses Active Directory, you can discover some of these items for yourself.

 If you log into a domain on your Windows PC, you can find the host name by exam-
ining the USERDNSDOMAIN environment variable, which records the domain controller
used when you successfully logged in. That domain controller contains the LDAP server.

 Most likely, the LDAP server is running on port 389.
 Most likely, your account has the necessary access rights.
 Run the Active Directory Users and Computers tool, connecting to the host. It dis-

plays the DN for the root node.
 After you obtain this information, you can run JXplorer and connect to the LDAP

server. You’ll see something similar to figure 4.11, which is an example LDAP directory
tree.

 The next step is to find your user object, which we’ve highlighted in the figure.
Unfortunately, every LDAP directory tree is different, so you can either browse around
or show up at the administrator’s office with another six-pack. Another alternative is
to use the export capabilities of JXplorer to dump the entire tree to a text file and use
a text editor to search for your login id. To use the search menu, you need to know
which attribute contains your login id, and you don’t know that yet.

 After you find your user object, scan through the data looking for your login id and
note the attribute for that id. For Active Directory, that attribute is usually sAMAccount-
Name. In other LDAP servers, an attribute named uid is often used for the login id.

 When you configure your login module, you need to provide a query that can
locate this user object. You now have all the information necessary to create this query,
so let’s see how to do it.

http://www.sun.com/download/products.xml?id=3f74a0db

98 CHAPTER 4 Securing applications
ESTABLISHING THE USER OBJECT QUERY

You can use the ldapsearch command line tool to construct and test the query that
you need to use to locate your user object. The command line syntax is as follows:

ldapsearch -b <baseDN> -h <host> -D <account>

➥ -w <password> (<attribute>=<loginId>)

The options for the tool are as follow:

■ <baseDN> is the root DN, which is dc=jbia,dc=org in the example.
■ <host> is the LDAP server host name.
■ <account> and <password> are the same you used for JXplorer.
■ <attribute> is the name of the attribute containing your login id.
■ <loginId> is your login id.

Here’s an example command that works with the example LDAP directory tree:

ldapsearch -b "dc=jbia,dc=org" -h jbia-fs1 -D jbia\peterj

➥ -w javadude "(sAMAccountName=peterj)"

The result should be the user object. The ldapsearch tool prints out all the attributes
for that object.

Figure 4.11 Browsing the LDAP directory tree

99Configuring login modules
 One thing to look out for, particularly in Active Directory, is that there could be
multiple directory trees that appear as one, causing errors when you attempt to
branch from one tree to another. If you get the following error, then you’ve run into
this problem:

javax.naming.PartialResultException: Unprocessed Continuation Reference(s);

➥ remaining name ‘dc=jbia,dc=org’

If this happens, you might have to use a node further down the tree. For example, in the
example LDAP tree, you might have to use ou=Users,ou=California,dc=jbia,dc=org.
If this happens, you can configure multiple LDAP login modules, one for each base DN
that you can search and that contains the users you’re interested in.

 In addition to the user query, the login module also needs to locate the group
object. Let’s see how to establish a query that will do this for us.
ESTABLISHING THE GROUP OBJECT QUERY

Most likely, your user object is the member of many groups. Locating the DN for the
group object may be as simple as looking for an attribute that’s repeated multiple
times. In Active Directory, the attribute is named memberOf and provides the DN for
the group objects. Use the group DN to locate one of the group objects in JXplorer,
and look through the attributes of the group object looking for the members of the
group. In Active Directory, the member attribute contains that information. In some
LDAP servers, the member attribute value is the user account id, but in other servers,
such as Active Directory, the value is the user DN. You need to note which scenarios
apply to your LDAP server because that will determine how you perform your search.

 Search through the attributes of the group object to find one that gives the simple
group name. In Active Directory, this can be either the name or sAMAccountName attri-
bute. This name is the role name that the LDAP login module will return.

 If the member attribute is the simple user login id, then you can use ldapsearch to
find all the groups to which you belong. The basic ldapsearch syntax is almost the
same as before.

ldapsearch -b <baseDN> -h <host> -D <account>

➥ -w <password> "(<attribute>=<loginId>)" <nameAttr>

The only differences in the values from the user query are as follow:

■ For <attribute>, use the name of the attribute in the group object that refer-
ences the users in the group. Typically, this attribute is named member.

■ For <loginId>, use your account id. Note that you can’t use the user object DN
here, although this could be a limitation of the ldapsearch tool used.

■ For <nameAttr>, use the attribute that contains the simple group name.

Here’s an example command that works for the example LDAP directory tree if the
member attribute for the groups uses a simple login id:

ldapsearch -b "dc=jbia,dc=org" -h jbia-fs1 -D jbia\peterj

➥ -w javadude "(member=peterj)" name

The result should be a list of the various groups to which you belong.

100 CHAPTER 4 Securing applications
 Now that you have the queries that yield the user and group objects, you’re ready
to configure the LDAP login module.
CONFIGURING THE LDAP LOGIN MODULE

We can now create an LDAP login module using all the information we’ve gathered so
far. Listing 4.4 shows an application-policy configuration based on the example
data that we’ve provided in this section.

<application-policy name="ldapLogin">
 <authentication>
 <login-module flag="required"
 code="org.jboss.security.auth.spi.LdapExtLoginModule">
 <module-option name="java.naming.factory.initial">

➥com.sun.jndi.ldap.LdapCtxFactory</module-option>
 <module-option name="java.naming.provider.url">

➥ldap://jbia-fs1:389/</module-option>
 <module-option name="java.naming.security.authentication">

➥simple</module-option>
 <module-option name="bindDN">

➥jbia\peterj</module-option>
 <module-option name="bindCredential">

➥javadude</module-option>
 <module-option name="baseCtxDN">

➥dc=jbia,dc=org</module-option>
 <module-option name="baseFilter">

➥(sAMAccountName={0})</module-option>
 <module-option name="rolesCtxDN">

➥dc=jbia,dc=org</module-option>
 <module-option name="roleFilter">

➥(member={1})</module-option>
 <module-option name="roleAttributeIsDN">

➥true</module-option>
 <module-option name="roleNameAttributeID">

➥name</module-option>
 </login-module>
 </authentication>
</application-policy>

In this case, we use the LdapExtLoginModule because it can handle hierarchical LDAP
structures, a necessary quality when using Active Directory. You could use the Ldap-
LoginModule instead, although its options are slightly different. Note the use of various
name properties; as we mentioned earlier, LDAP is treated as part of JNDI. The URL B
comes from the hostname we used in the ldapsearch program, with the proper proto-
col and the default LDAP port. For this example, we use simple authentication C,
meaning that we supply a login id D and a password E to log into the LDAP server.
LDAP servers provide a server-specific authentication mechanism that you can use
instead; you can specify that authentication name here.

 The base DN F and filter G are the same ones that we used for ldapsearch when
we looked up the user object. The login id as supplied by the user (for example, when
the browser asks the user to log in) is used for the {0} placeholder. As configured, the

Listing 4.4 Example LDAP login module configuration

B

C

D

E

F

G

H

I

J

1)

101Configuring login modules
user needs to supply his account name, without a domain name, to log in. For exam-
ple, when asked to log in by the browser, we’d supply peterj, not jbia\peterj. The
sAMAccountName contains only the basic account name, not the name in conjunction
with the domain name.

 Active Directory allows a user to log in using his email address, which is the value of
the userPrincipalName attribute. You could require the user to use an email address to
log into a web application by changing the baseFilter to be (userPrincipalName =
{0}). The password would be the same as for the login id.

 The role DN H is the same one we used for ldapsearch when looking up the
group. For the filter I, the user’s login is used for the {0} placeholder, and the user’s
full DN is used for the {1} login id. Because Active Directory uses the user’s DN as the
value of the member attribute, we use the {1} placeholder.

 When set to true, the roleAttributeIsDN option J indicates that the memberOf
attribute is for a user object, and the name attribute for a group is a DN, not a simple
name. We also have to supply an attribute whose value is the simple group name 1).
The group names gathered by this process form the roles to which the user belongs
and are used to grant access rights. If, in your LDAP server, the memberOf attribute is a
simple group name and not a DN, you can set roleAttributeIsDN to false; then you
don’t have to supply the roleNameAttributeID option. Table 4.7 lists other module
options that can be used for the LDAP login module.

Table 4.7 The options that can be used with the LdapExtLoginModule

Module option Description

allowEmptyPasswords Set this to true if the LDAP server allows anonymous login.

jaasSecurityDomain The MBean name of the JaasSecurityDomain used to decrypt the
password specified by bindCredential.

roleAttributeId If roleAttributeIsDN is set to false, this is the name of the attri-
bute of the user object that contains the role names.

roleRecursion If the LDAP server allows groups to be part of groups, set this value to
the number of nesting levels allowed. The LDAP login module will then
recursively search each group for parent groups to which it belongs, add-
ing each one to the roles to which the user belongs. The default is 0,
meaning that there’s no nesting of groups.

searchScope Allows one of the following values when searching for groups:

■ OBJECT_SCOPE—Searches only in the context specified by the
rolesCtxDN option.

■ ONELEVEL_SCOPE—Searches in the content specified by the
rolesCtxDN option and one level further out (away from the root).

■ SUBTREE_SCOPE—Searches in the content specified by the
rolesCtxDN option and all levels further out towards all
branches of the tree. This is the default.

searchTimeLimit The number of milliseconds to allow for searching for groups or users. If the
search takes longer, it’s aborted. The default is 10000 (10 seconds).

102 CHAPTER 4 Securing applications
Time for a short quiz: what’s missing from this configuration? If you answered the user’s
password, give yourself a gold star. The configuration did have a password used to log
into the LDAP server for making the queries, but this is akin to the account and pass-
word used to establish a database connection, not to authenticate a user who’s logging
into an application. In the database server login module, the query included the
user’s password, but where is it in LDAP? To answer this question, we have to tell you a
little about how the LDAP login module works.

 The LDAP login module performs three queries against the LDAP server to log in a
user, as follows:

■ The first query looks up the user object using only the login id. This search is
similar to the first ldapsearch query that we showed you earlier.

■ A second query is a login attempt using the user’s login id and the password.
■ The last query obtains the group objects.

The password is used, but you don’t have to reference it in the login module. Now
let’s take a look at another login module that helps simplify development and testing.

4.3.4 Using the identity login module

It’s often easier to develop and test applications when you don’t have to worry about
security constraints. But disabling or changing the security configuration of the appli-
cation itself isn’t necessarily a good idea; you’re likely to forget to enable security
again before you check your code back into version control. JBoss SX provides a login
module called IdentityLoginModule that allows anybody to access the system, no
matter what credentials they provide. This login module isn’t meant to be used in a
production environment, but it can come in handy in a development or test environ-
ment. The module can be used as follows:

<login-module code="org.jboss.security.auth.spi.IdentityLoginModule"
 flag = "required">
 <module-option name="principal">javid</module-option>
 <module-option name="roles">texan,newyorker</module-option>
</login-module>

The principal option is the principal that all users will be authenticated as. If this
option isn’t provided, it defaults to guest. The roles option is a comma-separated list
of roles the principal will be assigned to.

 Let’s explore how login-module stacking works.

4.3.5 Stacking login modules

Login modules can be stacked on top of one another if you want to authenticate or
authorize against multiple sources or if want to authenticate from a different source
than you authorize from. You can define two login modules in an application-
policy definition as shown in this example:

<application-policy name="my-stacked-policy">
 <authentication>
 <login-module

103Configuring login modules
 code="org.jboss.security.auth.spi.UsersRolesLoginModule"
 flag = "required">
 ...
 </login-module>
 <login-module
 code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
 flag="required">
 ...
 </login-module>
 </authentication>
</application-policy>

One login module uses the UsersRolesLoginModule, and the other uses the Data-
baseServerLoginModule, as defined by the code attribute for each login module. In
this case, both login modules have their flag attributes set to required. The flag
attributes specify which login modules are necessary and/or sufficient for authentica-
tion. The following are possible values for the flag attribute, taken directly from the
JBoss AS documentation:

■ required—Requires that the login module succeeds for the authentication to
be successful. If any required module fails, the authentication will fail. The
remaining login modules in the stack will be called regardless of the outcome
of the authentication.

■ requisite—Requires the login module to succeed. If it succeeds, authentica-
tion continues down the login stack. If it fails, control immediately returns to
the application.

■ sufficient—Doesn’t require the login module to succeed. If it does succeed,
control immediately returns to the application. If it fails, authentication contin-
ues down the login stack.

■ optional—Doesn’t require the login module to succeed. Authentication pro-
ceeds down the login stack regardless of whether the login module succeeds or
fails.

Based on the settings you use, some login modules may be reached, and others may
not. Any login module that is reached and successfully authenticated against will
make the authenticated principal’s role information available for authorization.

 If you want to authenticate against only one login module but still want to collect
role information from other login modules, you could use the password-stacking
module option on each login module as shown here:

<module-option name="password-stacking">useFirstPass</module-option>

The value useFirstPass is the only value that this module option can take; if you
define this module option, you must use that value. Enabling this module option
causes each login module to check if the user has already been authenticated by
another login module. If so, then the login module will skip its own authentication
and will only make its security roles available for authorization. If a login module only
does authentication, such as the BaseCertLoginModule, then you only authorize
against other login modules that it’s stacked with.

104 CHAPTER 4 Securing applications
 Let’s take a look at the BaseCertLoginModule, which you use when doing client-
certificate authentication.

4.3.6 Using the client certificate login module

If you want to do client-certificate authentication, you need to specify an application-
policy that knows how to read a keystore using an SSL-aware JaasSecurityDomain
MBean. JBoss SX provides the BaseCertLoginModule for this purpose. This login mod-
ule only knows how to authenticate against a keystore, so it must be stacked with another
login module that knows how to do authorization. Listing 4.5 shows you an example of
how to configure the BaseCertLoginModule stacked with the UsersRolesLoginModule.

<application-policy name = "my-client-cert">
 <authentication>
 <login-module
 code="org.jboss.security.auth.spi.BaseCertLoginModule"
 flag = "required">
 <module-option name="password-stacking">
 useFirstPass
 </module-option>
 <module-option name="securityDomain">
 java:/jaas/my-client-cert
 </module-option>
 </login-module>
 <login-module
 code="org.jboss.security.auth.spi.UsersRolesLoginModule"
 flag = "required">
 <module-option name="password-stacking">
 useFirstPass
 </module-option>
 ...
 </login-module>
 </authentication>
</application-policy>

The key module option that you must configure is securityDomain C. The password-
stacking module option B set on both login modules tells the security domain that the
login modules should be stacked.

 An alternative to stacking the BaseCertLoginModule is to use one of the classes
that extends it. Two such login modules are the CertRolesLoginModule and the
DatabaseCertLoginModule. The CertRolesLoginModule is a hybrid between the
BaseCertLoginModule and the UsersRolesLoginModule. It can authenticate against a
public key certificate like the BaseCertLoginModule and authorize against roles
defined in a properties file like the UsersRolesLoginModule. Likewise, the
DatabaseCertLoginModule is a hybrid between the BaseCertLoginModule and the
DatabaseServerLoginModule, which authorizes against a database. The best place to
learn about these other login modules is in the JBoss AS documentation, which we
reference at the end of the chapter.

Listing 4.5 Stacking BaseCertLoginModule with UsersRolesLoginModule

B

C

B

105References
4.4 Summary
We started this chapter by discussing the fundamental concepts behind application
security, including authentication, authorization, and encryption. You learned that
authentication is used to determine if a principal is who he claims to be. You learned
that authorization is used to determine if a principal has the authority to gain access
to the resources that he’s trying to access. And you learned about the importance of
secure communication, particularly when the communication is going over an open
network. You also saw an overview of how application security is configured in JBoss SX
by defining security domains and how to enable logging so that you can debug secu-
rity related issues when in development.

 We then took a much closer look at secure communication. We discussed the dif-
ferences between symmetric and asymmetric encryption. We talked about certificates
and how they can be used with asymmetric encryption protocols to enable source
authentication, and then we showed how to use the keytool utility to create your own
self-signed certificates and to import signed certificates into a keystore. We also
explored how certificates can be used to authenticate clients and showed how to cre-
ate a security domain that uses a keystore as a security datastore.

 Finally, we dove into the details behind configuring login modules, particularly
focusing on how to access security information from a database and an LDAP directory.

 In other chapters in the book, we show how to configure security for various com-
ponents or resources. But we’ll assume that you already know how to configure a secu-
rity domain with a login module accessing your underlying security data as we’ve
explained in this chapter. Table 4.1 in the beginning of this chapter summarized all the
sections in the book that talk about application security. Of all of these topics, web secu-
rity is by far the most involved. In fact, we had so much to write about web security that
we couldn’t fit it into the web chapter; we had to put it in its own chapter. The next chap-
ter will specifically talk about configuring web applications and the web server without
discussing security. We’ve dedicated chapter 6 to web security. After that, each chapter
that talks about security will contain the discussion directly in the chapter.

4.5 References
JBoss documentation—http://labs.jboss.com/jbossas/docs

See section 5.5.3 of the Configuration Guide for a discussion of the various login modules
available in JBoss.

Customizing EJB security in JBoss—http://www.javaworld.com/javaworld/jw-02-2002/jw-0215-
ejbsecurity.html

Although this article references previous versions of EJB technology, you can accomplish
context-based security in much the same way using EJB3 interceptors.

http://labs.jboss.com/jbossas/docs
http://www.javaworld.com/javaworld/jw-02-2002/jw-0215-ejbsecurity.html
http://www.javaworld.com/javaworld/jw-02-2002/jw-0215-ejbsecurity.html

Part 2

Application services

Now that you have a basic understanding of how things work within JBoss
AS, we’ll tackle specific application types. The chapters in this part of the book
cover the different types of applications that can be deployed to the application
server: web applications, enterprise applications (including EJBs), messaging
applications, and web services.

 In each chapter, we tackle many of the same issues: what are the standard
configuration mechanisms, and what additional configuration is required by
JBoss AS? How do you secure the application, not just in authentication and
access control, but also in encrypting the transmitted data? In fact, securing a
web application is such a large topic we gave it its own chapter.

 Each chapter is freestanding. You can read only the chapters you’re inter-
ested in, and come back to the others when you’re ready.

Configuring
 JBoss Web Server
The most common technologies for creating Java web applications are JSPs and
servlets, the standard Java EE web component technologies. These technologies
can be deployed to many different web containers, but the most popular is Apache
Tomcat, the reference implementation for the servlet and JSP specifications. Tom-
cat also doubles as a general-purpose web server that’s able to do most things that
popular native web servers (for example, Microsoft IIS and Apache HTTP Server)
do, such as serving static content, supporting virtual hosting, supporting a Com-
mon Gateway Interface (CGI), and so on. Tomcat is written in Java, so it’s portable

This chapter covers
■ Configuring web applications
■ Configuring JBoss Web Server
■ Configuring URL paths
■ Configuring connectors
■ Configuring web class loading
■ Configuring JavaServer Faces
109

110 CHAPTER 5 Configuring JBoss Web Server
but historically slower at serving static web pages than native web servers. Apache is
also the leader in the native web server market with the Apache HTTP Server, a fast
and highly scalable web server.

 JBoss AS serves web applications using a new Red Hat product called JBoss Web
Server, which combines the speed of the Apache HTTP Server with the versatility of
Apache Tomcat. JBoss Web Server is built on top of Apache Tomcat 6.0 but is capable
of using a native Apache library called Apache Portable Runtime (APR) to attain the
speed of the Apache HTTP Server.

 In this chapter, we teach you about the structure of web applications and how to
deploy them into JBoss AS. We then explore how to configure web applications and
the JBoss Web Server. We do cover a few aspects of web application configuration in
other chapters; we discuss session persistence and replication in the clustering chap-
ters (chapters 12 and 13), class loading and scoping web applications in the deploy-
ment chapter (chapter 3), and web application security in the web security chapter
(chapter 6).

5.1 Understanding web applications
In chapter 1, we created and deployed a simple web application into JBoss AS. We
won’t walk you through how to do this again, but in order to understand how to con-
figure web applications and the JBoss Web Server, it’s helpful to go over the basic
structure of a Java EE web application.

 Java EE web applications are packaged into the WAR structure defined in the serv-
let specification. In this section, we’ll explore the structure of a WAR package and talk
about the various configuration files that web applications use.

5.1.1 Understanding the web application structure

The packaging structure for a web application is simple. To
explain the structure, we’ll show you the directory outline
for a simple Hello World! application and discuss what files
go in which directories.

 Figure 5.1 shows the structure of a WAR package.
 The top-level folder shown in figure 5.1 defines the

name of the package. If a web application is packaged as an
exploded directory structure, the top-level folder defines
the name of the package, which is HelloWorld.war. If the
application were packaged as an archive, the filename for
the archive file would be HelloWorld.war.

 The top-level directory contains any static or presenta-
tion-specific files that your application may need. This
directory might include HTML files, XML files, images, JSPs,
sound clips, movie files, or other multimedia files. In this example, we see a file called
index.html and another called banner.gif directly under the top-level directory. These

Figure 5.1 WAR
archives contain Java code,
presentation content, and
configuration files.

111Understanding web applications
files can also reside in subdirectories directly under the top-level directory (excluding
the META-INF and WEB-INF directories).

 But applications contain more than static files; they contain code and configura-
tion as well. The WEB-INF directory of a WAR package contains all the configuration
files and code for a web application. You don’t want end-users to be able to access your
code and configuration files through a web browser; therefore, web containers restrict
external access to the WEB-INF directory.

 The WEB-INF directory contains the standard and the JBoss Web Server–specific
web deployment descriptors, web.xml and jboss-web.xml, as well as a Tomcat deploy-
ment descriptor called context.xml. We discuss deployment descriptors in the next
section. The WEB-INF directory also contains two subdirectories, classes and lib. The
classes directory holds any compiled class files that are part of your deployment, and
the lib directory holds any JAR libraries that your web application code depends on.

 A Java archive tool (such as jar, which ships with Sun’s JDK) creates a file called
manifest.mf that it puts in the META-INF directory. This file holds metadata about the
files in the archive and can be used to provide functionality such as electronic signing,
version control, package sealing, and extensions. Like the WEB-INF directory, the
META-INF directory is also inaccessible from a web browser.

 A web application can be packaged inside of an Enterprise Archive (EAR). We dis-
cuss this further in chapter 7 (section 7.1.3).

5.1.2 Understanding web application configuration

The servlet specification defines the structure and contents of web applications. All
Java web applications must have the WEB-INF/web.xml deployment descriptor—a con-
figuration file that provides the server with necessary information when it’s deploying
an application. Because the web.xml deployment descriptor is defined by the servlet
specification, it’s often called the standard deployment descriptor.

 Because the standard deployment descriptor contains configuration elements that
are common across all application servers, it only defines logical configuration. Each
application server must provide a mechanism to realize this logical configuration; sev-
eral application servers, including JBoss AS, do so by adding proprietary deployment
descriptors. The standard deployment descriptor defines what should logically happen,
but the proprietary deployment descriptor describes how it should be carried out by
physically tying it to some application server logic or component.

 For example, you can constrain a URL to be accessed only by a particular security
role in the standard deployment descriptor. This is a logical definition of what should
be secured, and so the configuration is portable across application servers. But the
physical configuration in the proprietary deployment descriptor tells the server how
you want to enforce the security rules by defining the source of the security data and
how that data should be compared to the restricted security role.

 To make life simple, JBoss Web Server provides default physical behavior for most
of the logical configuration found in the standard deployment descriptor, often ren-
dering a proprietary deployment descriptor unnecessary. When needed, JBoss Web

112 CHAPTER 5 Configuring JBoss Web Server
Server provides two proprietary deployment descriptors called jboss-web.xml and con-
text.xml. As shown in figure 5.1, all the deployment descriptors (standard and propri-
etary) must reside in the web application’s WEB-INF directory.

 Now, let’s take a closer look at each of these deployment descriptors.
THE WEB.XML FILE

Each web application must have a web deployment descriptor called web.xml located
in the application’s WEB-INF directory. The web.xml file holds standard configuration
information for servlets and JSPs. Because this file is part of the Java EE 5 specification,
it’s mandatory and portable across web application servers.

 Listing 5.1 shows a simple web.xml file declaring a single servlet.

<web-app version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <servlet>
 <servlet-name>Hello Servlet</servlet-name>
 <servlet-class>
 com.manning.jbia.HelloWorldServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Hello Servlet</servlet-name>
 <url-pattern>/sayhello</url-pattern>
 </servlet-mapping>
</web-app>

Because this file is explained in depth in the specification, numerous books, and
numerous online articles, we won’t spend time explaining how to use it. One of the
best places to find information on the elements in this file is in the XML schema,
which is located in the server’s docs/schema/web-app_2_5.xsd file.
THE JBOSS-WEB.XML FILE

JBoss Web Server uses WEB-INF/jboss-web.xml as its main proprietary deployment
descriptor. Here’s an example of what this file might look like:

<jboss-web>
 <security-domain>java:/jaas/simple-security-domain</security-domain>
</jboss-web>

The top-level element is jboss-web. This file is usually scant—or unnecessary alto-
gether—because again, JBoss Web Server uses many intuitive defaults, obviating the
need for verbose and explicit manual configuration.

 Throughout this chapter, we show how to configure different elements within this
file to enable various web application features. Table 5.1 gives an overview of some of
the main elements that we discuss in this book.

Listing 5.1 Declaring servlet and URLs inside the WEB-INF/web.xml file

113Understanding web applications
THE CONTEXT.XML FILE

As we mentioned in the introduction to this chapter, JBoss Web Server is built on top
of Tomcat. Applications running in a standalone Tomcat server can specify a proprie-
tary deployment descriptor called context.xml. JBoss Web Server has overridden most
of the configuration features of the context.xml file in the jboss-web.xml file, making
context.xml unnecessary in most cases. If you’re used to running standalone Tomcat
servers, you’ll have to get used to doing most of your application-level configuration
in the jboss-web.xml file instead of the context.xml file. There are a few cases where

Table 5.1 The top-level elements that can be configured in a jboss-web.xml file

Element What is it?

class-loading Used to enable isolated class loading as discussed in chapter 3 (sec-
tion 3.2). Use this if you wanted to change the class loading behavior
for the application but not necessarily the entire server.

security-domain Specifies which security domain the application uses for authentication
and authorization. We discuss this in chapter 6 (section 6.1.2).

context-root Defines the root URL mapped to this application when HTTP requests
come in (we discuss this in section 5.3.2). Use this if you want to use a
different URL context than the implicit one (the name of the WAR file).

virtual-host Specifies which virtual host the application belongs to. This must match
a virtual host that was defined in the Tomcat server.xml file. We discuss
this in section 5.3.1.

use-session-cookies A boolean flag that indicates whether or not the session should be kept
in client cookies.

replication-config Specifies when to replicate the HTTP session state throughout a cluster.
We talk about this more in chapter 13.

resource-env-ref Maps the Enterprise Naming Context (ENC) name for a resource-
env-ref defined in the web.xml file to the location in the global JNDI
namespace. Use this if you’ve defined a resource-env-ref in the
web.xml file for an application.

resource-ref Maps the Enterprise Naming Context (ENC) name for a resource-ref
defined in the web.xml file to the location in the global JNDI namespace.
Use this if you’ve defined a resource-ref in the web.xml file for an
application.

ejb-ref Maps the Enterprise Naming Context (ENC) name for an ejb-ref
defined in the web.xml file to the location in the global JNDI namespace.

ejb-local-ref Maps the Enterprise Naming Context (ENC) name for an ejb-local-
ref defined in the web.xml file to the location in the global JNDI
namespace.

servlet Used to specify servlet–specific customizations in JBoss Web Server. The
only feature currently supported is the run-as-principal feature, which we
don’t discuss in this book.

114 CHAPTER 5 Configuring JBoss Web Server
the context.xml file is used; we talk about one of them in section 5.6 when we discuss
application-level Tomcat valves.

 If you’re used to using Tomcat as a standalone web container, you may be used
to putting this file in the META-INF directory. JBoss Web Server looks for the file in
the WEB-INF directory so that all the web configuration files for an application are in
one location.

 Now that you’ve seen what is in each deployment descriptor, let’s see how JBoss
Web Server simplifies configuration that applies to all the applications in the server.
EXPLORING GLOBAL APPLICATION CONFIGURATION

An instance of JBoss AS can host multiple web applications. What if you have an appli-
cation configuration that you want to apply to all the web applications running in your
server? You could duplicate the configuration in each application’s configuration
files, but JBoss Web Server provides global configuration files that allow you to avoid
this duplication. A global configuration file is one whose contents apply to all the appli-
cations in the server. For example, having a global web.xml file is the same as repeat-
ing the configuration in that file in each individual web application’s web.xml file. We
put a particular configuration element in a global configuration file when we know
that the element applies to all the web applications.

 These files are located in the directory that hosts the JBoss Web Server’s deploy-
er. Table 5.2 shows the various application configuration files and their global
counterparts.

 The global web.xml file allows you to apply a global configuration that would oth-
erwise go in each application’s web.xml file. The existence of a global web.xml file
isn’t defined by the servlet specification; therefore, it’s neither standard nor necessar-
ily portable between application servers. Likewise, the contents of the global con-
text.xml file apply to all web applications in the server and obviate the need to define
the same configuration in each application’s context.xml file. There’s no global con-
figuration for jboss-web.xml, so any configuration you wish to apply to all the applica-
tions in your server must be repeated in each application’s jboss-web.xml file.

 It’s worth looking through the global configuration files to see what types of con-
figuration are usually defined globally. Now that you’ve learned about the structure of
Java web applications and about the various application-level configuration files, let’s
take a closer look at how to configure the JBoss Web Server.

Table 5.2 The directories where the various application-level configuration files can be found

Filename
Application-level configuration (relative

to your application’s root directory)
Global configuration (relative to default

configuration directory)

web.xml WEB-INF/web.xml deployers/jbossweb.deployer/web.xml

context.xml WEB-INF/context.xml deploy/jbossweb.sar/context.xml

jboss-web.xml WEB-INF/jboss-web.xml None available

115Configuring JBoss Web Server
5.2 Configuring JBoss Web Server
One nice thing about running in an application server environment is that the appli-
cation server provides a set of services that applications can use, allowing you to focus
on writing business code. You can then hook your applications into the services using
the application configuration files you learned about in section 5.1. In addition to
configuring applications, you may also have to configure the properties of the ser-
vices themselves.

 In this section, you’ll learn about the various files and directories related to the
JBoss Web Server. This gives you a basis for understanding how to configure the vari-
ous services available to web applications.

5.2.1 Locating key directories

Figure 5.2 shows you the JBoss AS directory structure, high-
lighting the main directories related to JBoss Web Server
and web applications deployment.

 As we discussed in chapter 2, you copy your application
directory to the deploy directory to deploy it into JBoss AS. In
a standard binary installation, a web application called
ROOT.war is in the deploy directory of the default configura-
tion. If you start the application server and go to http://
localhost:8080, you’ll see the root web application.

 JBoss AS comes prepackaged with JBoss Web Server in
both the default and the all configurations. The JBoss Web
Server deployer lives in the jbossweb.sar subdirectory of
server/xxx/deploy. The server/xxx/deployers jbossweb.
deployer directory contains the necessary JAR files to
deploy web applications. The following are some of the key files and directories:

■ deploy/jboss.sar/server.xml —Primary server configuration file. Used to configure
server components such as virtual hosts, protocols, ports, and request filters. We
discuss this file in the next section.

■ deploy/jbossweb.sar/context.xml —Global version of the application-level file by the
same name.

■ deploy/jbossweb.sar/jsf-libs —Directory. Contains libraries necessary for JSF
development.

■ conf/web.xml—Global version of the application-level file that we explored when
we discussed application configuration.

■ deployers/jbossweb.deployer/META-INF/war-deployers-jboss-beans.xml—Microcontainer
configuration file. Used to initialize the WAR deployer. In addition to configuring
WAR package deployment, this file also enables some additional server configu-
ration such as security, class loading, and clustering.

Let’s take a closer look at the server.xml and war-deployers-jboss-beans.xml configura-
tion files because they’re the primary files used for server configuration.

Figure 5.2 The main
directories used to configure
JBoss Web Server and to
deploy web applications

116 CHAPTER 5 Configuring JBoss Web Server
5.2.2 Exploring JBoss Web Server Configuration

JBoss Web Server’s main configuration file, server.xml, is located in the server/xxx/
deploy/jbossweb.sar directory as shown in figure 5.2. This file is used for most of the
server configuration that you’ll be concerned with. Because JBoss Web Server is built
on top of Tomcat, this file is almost identical to Tomcat’s server.xml file. Looking
through the Apache Tomcat 6 documentation (reference at the end of this chap-
ter) can help you gain a better understanding of the various configuration ele-
ments in the server.xml file. If you’ve configured Tomcat before, you should
be comfortable with this file. If not, no sweat; we’ll give you a high-level overview in
this section and show you how to configure specific things in this file throughout
the chapter.

 The server configuration is composed of components, some of which are contain-
ers for other components. The various configuration elements in this file can be
nested inside of one another in different ways. Figure 5.3 shows the acceptable nest-
ing of these elements. For example, the Service component is a container for the Con-
nector and Engine components.

 If you open this file, you’ll see code similar to that shown in listing 5.2. Almost
everything is a nested subcomponent of the Service element.

Figure 5.3 Different components
in the server.xml file can be nested
inside of one another.

117Configuring JBoss Web Server
<Server>
 <Service name="jboss.web"
 className="org.jboss.web.tomcat.tc5.StandardService">
 <Connector port="8080" address="${jboss.bind.address}"
 maxThreads="250" strategy="ms" maxHttpHeaderSize="8192"
 emptySessionPath="true"
 enableLookups="false" redirectPort="8443"
 acceptCount="100" connectionTimeout="20000"
 disableUploadTimeout="true"/>
 <Engine name="jboss.web" defaultHost="localhost">
 <Realm className=
 "org.jboss.web.tomcat.security.JBossSecurityMgrRealm"
 certificatePrincipal=
 "org.jboss.security.auth.certs.SubjectDNMapping" />
 <Host name="www.somehostname.com"
 autoDeploy="false" deployOnStartup="false"
 deployXML="false">
 <Alias>somehostname.com</Alias>
 <Valve className=
 "org.apache.catalina.valves.RequestDumperValve" />
 </Host>
 </Engine>
 </Service>
</Server>

Table 5.3 summarizes the various components seen in listing 5.2. Each element is
listed with a description of what the element is used for and a summary of when you
might need to configure it. This file can have other elements, but they‘re rarely used.
We won’t discuss them here.

Listing 5.2 The server.xml used to configure JBoss Web Server components

Table 5.3 The configurable elements in the server.xml file

Element What is it? When would you configure it?

B Server Represents the entire servlet container. Likely never.

C Service Container for multiple connectors that
share a single engine.

Likely never.

D Connector Binds to a particular port and listens for
requests using a particular protocol.

For any changes to the protocol or port
that clients use to communicate with
the web container. We discuss this in
section 5.4.

E Engine Receives and processes all requests
from all connectors in the same service.
The engine must be defined after all the
connectors.

When you’re setting up load-balanced
JBoss Web Server nodes as discussed
in chapter 13.

B
C

D

E
F

G

H
I

118 CHAPTER 5 Configuring JBoss Web Server
Out of the box, two connectors are defined—one that supports regular HTTP traffic
on port 8080 and one that supports traffic from native web servers using a protocol
called AJP on port 8009. The AJP protocol, a TCP/IP-based binary protocol, was cre-
ated specifically for Tomcat as an alternative to sending HTTP messages to a web con-
tainer. Because JBoss Web Server is built on top of Tomcat, JBoss Web Server supports
the AJP protocol too. You use the AJP protocol when you want to front-load an applica-
tion server with a native web server. The native web server must have support for the
AJP protocol, usually through a plug-in called mod_jk. You can see a diagram of how
this works in figure 5.10 in section 5.4, which is where we explore connector configu-
ration in detail.

 The previous example has a Host element, which handles all traffic to the machine
intended for the www.somehostname.com domain. If you have more than one domain
pointing to the IP address for a particular machine, you add different host configura-
tions to handle them. You can also provide aliases for a given host using the Alias con-
figuration element. You’ll learn how to define virtual hosts in section 5.3.1.

 The Valve element that we’ve defined provides us with a log of all the requests that
go to the enclosing Host element. Valves define interceptors that can be executed as a
request comes into the server. For example, if you want to log every access to a partic-
ular virtual host, you use a valve that intercepts the request and prints a message to a
log file before continuing to process the request. You can define valves at the engine
level or the host level, giving you the flexibility to apply a valve to the entire server or a
single virtual host. You can also define them for individual applications in the con-
text.xml file. We look at some of the valves that you can enable in section 5.6.

F Realm Defines how security information (such
as usernames, roles, and passwords) is
handled.

If you need to change the strategy for
mapping X509 certificate chains to a
principal for authentication purposes.
We discuss this when we talk about
web security in chapter 6.

G Host Defines virtual hosts. If you need to add or change the con-
figuration for a domains or hostname
mapped to your server. We discuss
this in section 5.3.1.

H Alias Specifies an alias for Host element
that surrounds it.

If you have multiple names for the
same virtual host. We discuss this in
section 5.3.1.

I Valve Intercepts requests that come into the
system and executes code before the
request reaches the targeted web compo-
nent.

In order to add some sort of monitor-
ing or logging capability to the web
container or a particular web applica-
tion. We discuss this when we talk
about valves in section 5.6.

Table 5.3 The configurable elements in the server.xml file (continued)

Element What is it? When would you configure it?

119Configuring JBoss Web Server
 Now that you know how to configure the server.xml configuration file, let’s
explore the microcontainer configuration file for the WAR package deployer because
it also has some server configuration that you might be interested in.

5.2.3 Exploring the WAR deployer configuration file

JBoss Web Server is bootstrapped when the WAR deployer is loaded. The microcon-
tainer configuration file for the WAR deployer contains some server configuration ele-
ments that you may want to adjust. This file, war-deployers-jboss-beans.xml, is located
in the server/xxx/deployers/jbossweb.deployer/META-INF directory.

 This configuration file defines a bean called WarDeployer, the main deployer used
for web applications. This deployer defines several properties that affect the way appli-
cations deploy into JBoss Web Server. Table 5.4 summarizes the main properties that
you might configure.

 If the deleteWorkDirOnContextDestroy property is set to true, the container
deletes the directory under server/xxx/work that corresponds to the application
when the application context is destroyed. The application context is an object the
server creates when the application starts running and destroys when the application
stops running. The object is used to store configuration and runtime information
about the application. Think of it as an in-memory representation of your configura-
tion file. The application context is destroyed when the server is stopped or when an
application is removed from the server. The work directory is used by JBoss Web
Server to store compiled JSP files and other temporary data. You may want to refer to
these files after the server has stopped, so the default value is false; if you don’t need
these files to hang around, change this to true.

 The rest of the configuration attributes in table 5.4 are related to class loading and
are covered in section 5.5. The war-deployers-jboss-beans.xml file also contains other de-
ployers such as the WebAppClusteringDefaultsDeployer, which we discuss in chapter 13.

 Now that you have a general understanding of how web applications and JBoss
Web Server are configured, let’s explore some common configurations. We’ll start
with a discussion of configuring URL paths.

Table 5.4 Commonly modified properties under the WarDeployer configuration element in the
 war-deployers-jboss-beans.xml file

Property What is it?

defaultSecurityDomain The security domain used if you don’t explicitly define one
in your application’s WEB-INF/jboss-web.xml. We talk about
this in chapter 6 (section 6.6).

deleteWorkDirOnContextDestroy Deletes the server/xxx/work directory after the application
context ends.

java2ClassLoadingCompliance
useJBossWebLoader
filteredPackages

These properties are used to configure class loading for web
applications. We talk about these properties in section 5.5.

120 CHAPTER 5 Configuring JBoss Web Server
5.3 Configuring URL paths
An application can contain many different types of content (HTML pages, images,
servlets, JSPs, and so on). You can configure a single JBoss AS instance to host multiple
applications. A JBoss AS instance can also host multiple domains (or hostnames) that
each run multiple applications. When a URL is sent from a user’s web browser to the
server, the server has to determine how to route the request to the appropriate host-
name, application, and resource that the user is trying to access.

 Let’s dissect a URL that might be sent from a client browser to understand how the
different parts of the URL help route a request to a resource on the server. Figure 5.4
shows you the five main parts of a URL and how they relate to elements within the net-
work or JBoss Web Server.

 The protocol defines how the client wants to talk to the server. Generally, we use
http, but if we want secure communication, we use https. We talk about secure web
communication in chapter 6 (section 6.4). The port specifies which OS port the web
server is listening to requests on. If no port is specified, web browsers typically send
the request to port 80. The protocol and port that a browser sends to the server deter-
mine which connector is accessed. The domain name routes a request through the
internet (or intranet) to the machine hosting JBoss AS. Multiple domain names can be
routed to a single server instance.

 The context path tells the application server which web application the end user is
trying to access. If you have multiple applications running on the same server, they
should each have a unique context path so that the server can distinguish where the
request should be routed. You can also bind one application in your server to the root
context path, meaning that the user won’t have to specify a context path to access that
particular application. This shortcut is useful when you want users to access an appli-
cation right when they type in your domain name.

 The last part of the URL is the resource that the user is trying to access. This
resource can be anything from a static HTML file or an image to a servlet or a JSP. If a
static file is specified in this part of the URL, it’s accessed relative to the root of your
web application. If a web component (such as a JSP, servlet, or JSF page) is requested,
this portion of the URL depends on the logical mapping defined in the web.xml file.

Figure 5.4 The various parts of a URL are read by the server to guide the request to
the appropriate resource.

121Configuring URL paths
When a request gets routed to JBoss AS, a component called a request dispatcher exam-
ines the request and decides which application and resource to forward the request
to. Figure 5.5 shows how the different portions of the URL help the request dispatcher
decide where to route a request.

 As the figure shows, when a request comes into the dispatcher, it examines the con-
text path and determines which application to access. It then accesses the application
and forwards the request to the appropriate resource within the application.

 Now that we have some background on how the server breaks apart the URL and
uses it to route the request, let’s take a look at how to configure virtual hosts, context
paths, and resources.

5.3.1 Enabling virtual hosts

Multiple domain names or sub-domain names can point to the same instance of
JBoss AS. Domain names must be registered with a Domain Name Service (DNS)
server so that they can resolve to the IP address for the server. By default, if you
deploy an application to the server, it’s accessible on any domain name mapped to
the box. For example, if you deploy an application called bankapp.war to a server
that has the domains www.site1.com and www.site2.com pointing to it, it can be
accessed using either the http://www.site1.com:8080/bankapp URL or the http://
www.site2.com:8080/bankapp URL.

 If you want to host different domains on the same server but only want to expose
specific applications on each domain, you can configure applications to bind to spe-
cific hostnames using virtual hosts. A virtual host is a mechanism for segmenting the
web container to expose certain applications to certain domains.

 Figure 5.6 shows you a single JBoss Web Server instance running two virtual
hosts—one for the www.site1.com domain and the other for the www.site2.com

Figure 5.5 The
request dispatcher
routes a request
to a resource by
examining the URL.

122 CHAPTER 5 Configuring JBoss Web Server
domain. The different web applications running in the server are bound to the differ-
ent virtual hosts. This isn’t uncommon in an enterprise that has many small web appli-
cations that don’t warrant the cost and overhead of their own servers.

 To use virtual hosts, you have to do the following:

1 Configure the connector to use virtual hosts.
2 Define the virtual host in the server configuration file.
3 Bind your applications to the virtual host in your application configuration file.

Let’s talk about each of these steps, starting with the connector configuration.
ENABLING VIRTUAL HOSTS ON THE CONNECTOR

In section 5.4, we discuss how to configure the various JBoss Web Server connectors.
To enable virtual hosts, you must enable the useIPVHosts attribute on the connector
used to access the application in question. This is a boolean attribute, so the values
can be either true or false. The default value is false; if you set it to true, the con-
nector determines the destined domain name of the incoming request and forwards it
to the virtual host configured to handle that domain name.
DEFINING THE VIRTUAL HOST

In the server configuration file, virtual hosts are defined by the Host element in JBoss
Web Server’s server/xxx/deploy/jbossweb.sar/server.xml file. As you learned when
we talked about the structure of the server.xml file in section 5.2.3, the Host element
is a sub-element of the Engine element. You can define multiple hosts for an engine. A
single virtual host definition in the server.xml looks similar to the following:

<Engine name="jboss.web" defaultHost="localhost">
 <Host name="localhost" autoDeploy="false" deployOnStartup="false"
 deployXML="false">
 </Host>
</Engine>

Figure 5.6 Requests
going to different domain
names can resolve to the
same server.

123Configuring URL paths
The defaultHost attribute on the Engine element points to the virtual host that han-
dles requests for applications that have no virtual host binding. If you define multiple
virtual hosts, one of the hosts that you define should match the defaultHost attribute
for the engine. The name attribute on the Host element specifies the domain name
that the virtual host is defined for. This should match the domain name registered
with your DNS server. By default, the name attribute is set to localhost, allowing the
virtual host to handle every request that comes into the server.

 To define your own virtual host, you add another Host block to the server.xml file.
Here’s an example of a virtual host definition for a domain called www.somehost-
name.com.

<Host name="somehostname.com" autoDeploy="false"
 deployOnStartup="false" deployXML="false">
 <Alias>www.somehostname.com</Alias>
</Host>

The only thing that you need to change on the virtual host configuration is the name
attribute. In this case, we also added an Alias sub-element. An alias is used if you want
to map multiple domain names to the same virtual host configuration. An alias can be
a completely different host name, or it can be used to define a domain and one or
more sub-domains as in the example.

 All the deployment-related attributes are set to false because these are Tomcat
configuration attributes. JBoss AS uses its own application deployment mechanism to
load web applications into memory—the WAR deployer.

 Now that you’ve learned how to define a virtual host in the server configuration
file, let’s look at how to bind an application to the virtual host.
BINDING AN APPLICATION TO A VIRTUAL HOST

To bind an application to the virtual host, you need to configure the application itself.
You can bind an application to a virtual host by using the virtual-host element in
the web application’s WEB-INF/jboss-web.xml file. Here’s an example:

<jboss-web>
 <virtual-host>www.somehostname.com</virtual-host>
</jboss-web>

As we discussed in the last section, if you don’t specify the virtual-host element,
then requests sent to the application are handled by the virtual host defined by the
defaultHost attribute, which is defined in the Engine element in the server.xml file.

 Now that you’ve learned how to configure the host portion of a URL, let’s delve
more into context paths.

5.3.2 Configuring context paths

As shown in figure 5.7, the context path is the part of the URL that comes right after
the domain name and port.

 The context path points the request dispatcher to the appropriate application.
JBoss Web Server makes configuring the context path for an application easy—you
don’t have to configure it at all! When you deploy a web application into JBoss AS, the

124 CHAPTER 5 Configuring JBoss Web Server
WAR deployer uses the name of the WAR package (sans the .war extension) for the
context path. For example, if you deploy a WAR package named helloworld.war into
JBoss AS, JBoss Web Server assigns the context path helloworld to the application.

 Figure 5.8 demonstrates this relationship by showing a web package deployed in
the server and how it relates to the context path in a URL used to access a resource in
the application.

If you want to use a different context path for an application than the name of the
web archive, you can change it through manual configuration. If you deploy your web
application in a WAR package, this configuration can be done through your applica-
tion’s jboss-web.xml file. If you deploy your application as part of an enterprise pack-
age (EAR), you configure it in the enterprise package’s application.xml file. Let’s see
how to do both.
CHANGING THE URL CONTEXT PATH FOR A WEB APPLICATION

If you deploy your application in a web archive, you change the context path by add-
ing a context-root element in the jboss-web.xml file for your application. For exam-
ple, if you have an application deployed as helloworld.war, but you want the context
path to be hello instead of helloworld, you configure the following in the jboss-
web.xml file:

<jboss-web>
 <context-root>/hello</context-root>
</jboss-web>

Figure 5.7 The context path directs the request to the appropriate application
inside the server.

Figure 5.8 The context
path is automatically
configured to the name
of the web package, but
this can be overridden
via configuration.

125Configuring URL paths
If you’ve used Tomcat as a standalone application server, you may be
used to changing the context path in the server.xml file or in the con-
text.xml file for your application. This method doesn’t carry over to JBoss
Web Server; you should stick with changing the jboss-web.xml file as
described in this section.

The value of the context-root element overrides the JBoss Web Server default, which
is based on the name of the WAR file. Overriding the default context root is fairly sim-
ple for enterprise applications as well.
CHANGING THE URL CONTEXT PATH FOR AN ENTERPRISE APPLICATION

We cover enterprise applications in chapter 7. But because we’re on the subject of con-
figuring context paths, it’s worth mentioning how you might configure the URL context
for a web application that’s part of a larger enterprise application. An enterprise applica-
tion is an application that may contain one or more web archives and/or EJB archives
in one big archive file. Each enterprise application has its own configuration file called
application.xml. Each web application is configured in the application.xml file under
a web module element. Here’s how you set the context-root in this file:

<application>
 <display-name>HelloWorldApp</display-name>
 <module>
 <web>
 <web-uri>helloworld.war</web-uri>
 <context-root>/hello</context-root>
 </web>
 </module>
</application>

The context-root element is set to hello, so any traffic going to the hello URL con-
text is directed to the helloworld.war application.

 Now that you know a bit about context paths, you might be curious to know how to
configure an application to have no context path at all.

5.3.3 Changing the root context path

What if you have a web application that you want people to access by providing only a
domain name? For example, you own the mywonderfulbank.com domain, and you
want your users to be able to access your banking application by going to http://
www.mywonderfulbank.com/. You want an application that’s bound to the root context.
The root context is the context bound to /. Think of this as a lack of a context in the
URL. Out of the box, the root context points to a web application deployed under the
server/xxx/deploy/ROOT.war package.

 In chapter 1, after installing JBoss AS and starting the default configuration, we
asked you to pull up a browser window and go to http://localhost:8080/. The web
application that came up was the root application. You most likely want to change the
default root application because you don’t want it accessible in a production system.
You can do this in several ways.

WARNING

126 CHAPTER 5 Configuring JBoss Web Server
■ You can change the existing root application —You can modify the existing root
application or build your own and replace the existing one. This is one of the
simplest approaches.

■ You can configure the context path —When we talked about configuring context
paths in section 5.3.2, you learned how to override the default context path by
specifying the context-root element in an application WEB-INF/jboss-web.xml
file. If you have another application that you want to bind to the root context,
you use the following configuration:
<jboss-web>
 <context-root>/</context-root>
</jboss-web>

Before doing this you should remove or rename the default root web applica-
tion (ROOT.war) from the deploy directory.

■ You can remove the root context —You may decide that your server doesn’t need a
root application at all. In that case, you can delete the default root web applica-
tion from the deploy directory altogether. If a user tries to access the root
context and there’s nothing mapped to it, JBoss Web Server will return a
blank page.

■ You can secure the root context —You may decide that the default root application is
useful, but you don’t want people accessing it unless they have permission or
are physically on the server. In chapter 6, we teach you how to secure a web
application by restricting URLs and binding the application to a security
domain. Another way to secure the root application is to bind it to a virtual host
that can only be accessed when somebody is physically on the server. We talk
about how to do this in chapter 15.

Now that we’ve discussed how to configure the URL paths, let’s talk about how to con-
figure connectors.

5.4 Configuring connectors
In section 5.3, we discussed the structure of a URL that’s sent from a client browser to
the server. We discussed how the domain name, context path, and resource definition
in the URL helps route a request to the appropriate resource on the server. The two parts
of the URL that we didn’t talk about in detail are the protocol and the port. Figure 5.9
shows you where these elements are in a URL that might be sent to a web server.

 The protocol portion of the URL defines the protocol over which you intend to
communicate with the server. HTTP is the protocol that web browsers use to commu-
nicate with web servers. Clients communicate over HTTP or Hypertext Transfer
Protocol over Secure Sockets Layer (HTTPS), or secure HTTP. The top portion of fig-
ure 5.10 shows that a web browser can communicate with JBoss Web Server over
HTTP or HTTPS.

 But clients don’t always communicate directly to a servlet container; sometimes
they communicate with a native web server, which in turn, communicates with a servlet

127Configuring connectors
container. The native web server can forward the HTTP request to the servlet container
using either the HTTP or HTTPS protocol. But JBoss Web Server supports another pro-
tocol called AJP that allows native web servers to send the request in a binary format,
which can be faster in many cases. The bottom portion of figure 5.10 illustrates the dif-
ferent forms of communication that can occur between a web browser and a native web
server and, in turn, between a native web server and JBoss Web Server.

 OSs allow multiple programs to communicate over the network. To separate the
communication traffic, an OS allows different programs to bind to different TCP/IP
ports. Web servers typically bind to port 80 to listen for HTTP traffic.

 JBoss Web Server uses connectors to bind to particular ports and listen for traffic
over particular protocols. You can configure two main types of connectors in JBoss
Web Server: HTTP connectors and AJP connectors. The HTTPS protocol is supported
by defining an HTTP connector with a few extra configuration attributes.

 Let’s take a closer look at how to configure the connectors, and then we’ll discuss
several common things that you can configure connectors to do.

Figure 5.9 The protocol and the port are configured in the connector definition in the
server.xml file.

Figure 5.10 JBoss Web Server
can accept HTTP or HTTPS
directly from a web browser or a
native web server. It can also
accept AJP requests from a
native web server.

128 CHAPTER 5 Configuring JBoss Web Server
5.4.1 Understanding connector configuration

In section 5.2.2, we discussed the structure of the JBoss Web Server configuration file
(server/xxx/deployers/jbossweb.deployer/server.xml) and how connectors are
defined as sub-elements to the Server configuration element. If you open the
server.xml file in an out-of-the-box configuration, you see a configuration that looks
similar to what is shown in listing 5.3.

<Service name="jboss.web"
 className="org.jboss.web.tomcat.tc6.StandardService">

 <!-- A HTTP/1.1 Connector on port 8080 -->
 <Connector protocol="HTTP/1.1" port="8080"

 address="${jboss.bind.address}"
 connectionTimeout="20000" redirectPort="8443" />

 <!-- A AJP 1.3 Connector on port 8009 -->
 <Connector protocol="AJP/1.3" port="8009" address="${jboss.bind.address}"
 redirectPort="8443" />

 <!-- SSL/TLS Connector configuration using the admin devl guide keystore
 <Connector protocol="HTTP/1.1" SSLEnabled="true"
 port="8443" address="${jboss.bind.address}"
 scheme="https" secure="true" clientAuth="false"
 keystoreFile="${jboss.server.home.dir}/conf/chap8.keystore"
 keystorePass="rmi+ssl" sslProtocol = "TLS" />
 -->

 ...

The first connector is an HTTP connector, which is configured to listen for regular
HTTP traffic on port 8080. You know this is an HTTP connector because of the proto-
col attribute. The protocol attribute takes on a default value of HTTP/1.1 if unde-
fined. The port attribute configures the port number that the connector binds to. If
you want your HTTP traffic to come in on a different port, you change the value of the
port attribute. For example, if you plan on running a standalone instance of JBoss AS,
you can set the port attribute to 80, allowing clients to access your server without spec-
ifying a port; browsers send requests to port 80 by default.

 You know that the second connector is an AJP connector because the protocol
attribute is set to AJP/1.3. The port attribute tells you that the AJP connector is
bound to port 8009. The third connector is a secured HTTP connector—an HTTP con-
nector configured to handle HTTPS traffic. To use secured HTTP, a keystore must
exist. Because each JBoss AS user must create his own keystore, the connector is com-
mented out by default. We talked about creating keystores and public-key certificates
in chapter 4. We talk about how to use encrypted web communication in chapter 6.

 In the next several sections, we describe how to configure various connector attri-
butes. The HTTP and AJP connectors share most of the same configuration attributes;
as we describe how to configure the attributes, assume that the configuration can
apply to either connector unless we specify otherwise.

 Let’s start with a discussion of how to configure concurrency control in a connector.

Listing 5.3 Connectors configured in the server.xml file

129Configuring web class loading
5.4.2 Configuring concurrency

Connectors are designed to handle concurrent connections from multiple browsers.
There are two main attributes that you can configure: maxThreads, and acceptCount
(for the HTTP connector) or backlog (for the AJP connector).

■ maxThreads—The maximum number of processing threads that can run con-
currently. Because the server can’t create any more threads, this parameter ulti-
mately limits the number of concurrent users. If all threads are being used, it’s
up to the individual connector to provide queuing. If left unspecified, the
default is 200 threads.

■ acceptCount or backlog—Defines the length of a queue. When all request pro-
cessing threads are busy, the connector starts queuing the requests. The HTTP
connector uses the acceptCount attribute, and the AJP connector uses the
backlog attribute. If the queue is full, the connector refuses the request. If left
unspecified, the default is to queue 10 requests.

If you have a lot of concurrent users, you want to make sure that none of them is keep-
ing a connection open for too long so that other requests can be fulfilled. Let’s
explore how to configure connection timeouts.

5.4.3 Configuring timeouts

Sometimes, the resource that a client is trying to access doesn’t respond or responds
slowly. We don’t want the client to hog a connection thread indefinitely, so the con-
nector provides a connectionTimeout attribute that you use to specify the number of
milliseconds to wait for the requested URL after a connection is made. For the HTTP
connector, the default is 60 seconds (60,000 milliseconds); for the AJP connector, the
default is 0 (infinite).

5.4.4 Configuring a proxy hostname and port

If you’re running behind a proxy server, you can fool your web applications into think-
ing that you aren’t by using the proxyName and proxyPort attributes. These attributes
override the values that are provided to your application when your code calls the
request.getServerName() and request.getServerPort() servlet methods.

 Now that we’ve discussed connectors and how to configure them, let’s see what
configuring class loading entails.

5.5 Configuring web class loading
In chapter 3 (section 3.2), we gave you a general background on how class loading
works in JBoss AS. Java EE web applications don’t follow the same default class loading
convention that most other archive types do in JBoss AS. Web applications don’t use a
shared class-loader repository but delegate to the regular system class loader by
default. The servlet specification recommends that web applications be isolated from
one another, and Red Hat abides by this recommendation.

 You can configure web applications to use a class-loader repository in the micro-
container configuration file for the WAR deployer, server/xxx/deployers/jbossweb.

130 CHAPTER 5 Configuring JBoss Web Server
deployer/META-INF/war-deployers-jboss-beans.xml. The class loading properties are
part of the WarDeployer bean. You can configure three class loading properties:
java2ClassLoadingCompliance, useJBossWebLoader, and filteredPackages.

 The java2ClassLoadingCompliance property is set to false by default, telling the
deployer to load classes from within the web application’s WEB-INF/lib and WEB-INF/
classes directories before trying to load them from the parent (system) class loader.
The useJBossWebLoader property is also set to false, telling the container to use its
regular class loader rather than a regular JBoss AS class loader that hooks into a class
loader repository.

 You may have a case where you want to load most of your libraries from inside of your
application’s WEB-INF/lib and WEB-INF/classes directories first, but you also have a sub-
set of classes that you want to load through the parent (system) class loader first. In this
case, you can leave the java2ClassLoadingCompliance property set to false but specify
specific package names using the filteredPackages property. JBoss AS will attempt to
load classes that match the packages listed under this property by going to the parent
(system) class loader first. This method only works if the useJBossWebLoader option is
false—that is, there’s no class loader repository.

 You should now have a good background on how web application class loading
works in JBoss AS. Now let’s talk about valves, another feature of JBoss Web Server.

5.6 Using valves
Sometimes you want to perform certain actions every time a request comes into the
server. For example, you may want to log information about the request, or you may
want to check the originating IP address on a request and block it if it’s on a blacklist.
You can program this logging or blacklisting functionality into your application code,
but because it’s not specific to your business logic, you might, instead, accomplish it
using a valve, or interceptor.

TIP People using JBoss Web Server often want to know how to enable web-
server–style access logging. Servers like Apache, IIS, and Tomcat stand-
alone are configured to create log files that show information about
requests made to the server. JBoss Web Server has no logging enabled by
default, but it can be enabled by using the AccessLogValve.

JBoss Web Server provides valves that can intercept requests as they come into the
server. Figure 5.11 shows how requests coming from HTTP clients are intercepted by a
valve, the valve logs information about the request to a log file, and then the request
continues to the destined web applications.

 You can configure valves for individual applications by defining them in the
WEB-INF/context.xml file. You can also define them at the server level as a sub-
element of an engine or a host in JBoss Web Server’s server.xml file, as we discussed
in section 5.2.3. Only the CachedConnectionValve is enabled by default, but others
are available, yet commented out, in the server.xml file.

131Using valves
Valves are configured using the Valve element. The element must have an attribute
called className that points to a Java class with the valve code. For example, imagine
the following valve defined in the server.xml file:

<Host name="mydomain.com" ... >
 <Valve className="org.apache.catalina.valves.RequestDumperValve" />
 ...
</Host>

Every time a request comes into the mydomain.com virtual host, this valve prints all
the request information to the console window as well as to the server/xxx/log/
server.log file. Table 5.5 lists some other valves that you might find useful.

Table 5.5 Some valves that ship with JBoss Web Server

Valve name (the value of the Valve className attribute) Description

org.apache.catalina.valves.RequestDumperValve Logs information about a
request before and after it’s
processed. Beneficial for
debugging problems related to
the request header or informa-
tion on a cookie.

org.apache.catalina.valves.AccessLogValve Writes to a log file that resem-
bles a web server access log.
Provides a configurable pattern
syntax for customized log file
formatting.

org.apache.catalina.valves.FastCommonAccessLogValve Similar to the AccessLog-
Valve but faster and more
limited in configuration.
Intended for use in a produc-
tion system.

org.apache.catalina.valves.RemoteAddrValve Allows filtering of requests
based on the client’s IP address.

Figure 5.11 Valves intercept requests
coming into a web application.

132 CHAPTER 5 Configuring JBoss Web Server
All the valves that start with the org.apache.catalina package name are well docu-
mented in the Tomcat 6 online documentation, so we won’t delve into the details on
these. The ones that start with org.jboss.web are specific to JBoss Web Server and are
well documented in the JBoss AS documentation.

 Let’s move on to another common area of the web server that you might want to
configure when you’re creating Java-based web applications: JSF.

5.7 Configuring JavaServer Faces
Earlier versions of JBoss Web Server shipped with Apache MyFaces, but it now has
built-in support for JavaServer Faces using the GlassFish Mojarra JSF implementation.
Mojarra is the JSF 1.2 reference implementation. If your application uses JSF, you
don’t have to package the core JSF libraries with your application; all you have to do to
make your application use MyFaces is configure the FacesServlet in your application’s
WEB-INF/web.xml file as shown in listing 5.4.

<web-app version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

➥ http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 ...

org.apache.catalina.valves.RemoteHostValve Allows filtering of requests
based on the client’s hostname.

org.apache.catalina.authenticator.SingleSignOn When the user signs into a sin-
gle application, this valve auto-
matically signs them into all
other applications associated
with the virtual host for which
the valve is defined.

org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn This is the same as the
SingleSignOn valve but
enables the single-sign-on fea-
ture to work across a cluster of
JBoss AS servers.

org.jboss.web.tomcat.service.jca.CachedConnectionValve Automatically closes all JCA
connections when the web
request ends. This might be
useful during development, but
you’ll probably want to solve the
underlying problem before pro-
duction and disable this valve.

Listing 5.4 Adding a servlet and servlet-mapping element to the WEB-INF/web.xml file

Table 5.5 Some valves that ship with JBoss Web Server (continued)

Valve name (the value of the Valve className attribute) Description

133Summary
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.faces</url-pattern>
 </servlet-mapping>
 ...
</web-app>

The .FacesServlet is a standard part of the JSF specification that enables JSF requests
to be processed and handled. If you want to update or add to the JSF libraries, you can
find them in the server/xxx/deploy/jbossweb.sar/jsf-libs directory. If you want to use
a different implementation altogether, you can delete that entire directory and
include your JSF libraries in your own application’s WEB-INF/lib directory.

5.8 Summary
We started this chapter by talking about the structure of web applications and by exam-
ining the different deployment descriptors that are used for web applications that will
run in JBoss AS. You learned that configuration files can be packaged in the WEB-INF
directory of a web application and that global configuration files can also be used to
configure application-level settings for all web applications running in the server.

 After discussing web application configuration, we took a look at the configuration
of JBoss Web Server. We explored where the key configuration files can be found and
gave you an overview of what they contain.

 Using this fundamental knowledge of configuring web applications and JBoss Web
Server, we spent the rest of the chapter talking about specific and common things that
you can configure when using web applications. We started by talking about URL
paths and how the different parts of a URL submitted by a client are used to route a
user’s request to a particular piece of content. We looked at virtual hosts to see how
servers can host multiple host names and then learned how to configure a virtual host
and bind an application to it. We looked at context paths to see how servers can host
multiple applications, and you learned how to change the context path for a web and
an enterprise application. We also discussed the root context and went over several
different options for changing the root context path.

 After learning how to configure URL paths, we discussed JBoss Web Server connec-
tors and how they’re used to allow client requests to come in over different protocols.
We discussed how to configure many aspects of communication on the connectors
including concurrency, timeouts, security, virtual hosts, and proxy hostnames.

 After talking about connectors, we discussed web class loading. We discussed
class loading in chapter 3, but web applications have slightly different class loading
rules because of the servlet specification. We gave an overview of why there are dif-
ferent requirements and showed how to configure different web-specific class load-
ing parameters.

134 CHAPTER 5 Configuring JBoss Web Server
 We also talked about valves and how they intercept incoming and outgoing
requests to enable pre- and post-processing. We showed how to configure a valve and
gave a summary of the various valves that are available in JBoss Web Server. We
wrapped up the chapter with a discussion of the JSF implementation that’s available
and how you can enable your application to use it.

 We didn’t cover two major things about web applications: security and cluster-
ing. There’s a lot to say about both these topics. Web security is so detailed that we
devote the entire next chapter to it. We also have two chapters (12 and 13) on clus-
tering that discuss web-related clustering topics such as HTTP session replication and
load balancing.

5.9 References
Apache Tomcat 6.0 documentation—http://tomcat.apache.org/tomcat-6.0-doc/index.html
Servlet specification—http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html
The GlassFish Mojarra project—https://javaserverfaces.dev.java.net/
Configuring JSF—http://www.jboss.org/community/docs/DOC-10837

http://tomcat.apache.org/tomcat-6.0-doc/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html
https://javaserverfaces.dev.java.net/
http://www.jboss.org/community/docs/DOC-10837

Securing web applications
While working on different projects, we’ve seen project teams spend a lot of time
writing custom authentication and authorization code. But this code functions in
much the same way as the security model defined by the Java EE specification. In
many cases, you don’t have to write custom security code for every new web applica-
tion you write; the standard web security features of Java EE can obviate writing
security code altogether, allowing you to add security to your application entirely
through configuration.

 In chapter 4, we talked about the fundamentals of JBoss security and showed
you how to configure security domains and login modules. In chapter 5, we talked
about the basics of web applications and how to package, deploy, and configure
them. In this chapter, we bring these two concepts together, and you’ll learn how to
configure web security.

This chapter covers
■ Configuring web security
■ Web authentication
■ Web authorization
■ Encrypted web communication
135

136 CHAPTER 6 Securing web applications
 First, we explore the configuration files necessary to enable security; then we talk
about how to enable authentication and authorization for URLs relative to your appli-
cation’s context path. We also look at how to enable secure communication for server
authentication, mutual authentication, and client-certificate authentication.

6.1 Configuring web security
By default, web applications aren’t secured. If you write a web application and deploy
it to the application server without configuring security, anybody can access any URL
relative to your application’s context path. JBoss Web Server is also insecure by
default. For example, all requests sent to your server are unencrypted because the
secure HTTP connector isn’t enabled. In this section, you’ll learn how to configure the
various server and application configuration files to enable security.

 Figure 6.1 shows you which configuration files are used to configure security
within the server and for applications.

 Although this seems like a lot of files, each file has a specific purpose. The
server.xml file configures JBoss Web Server and, in particular, can be used to define
connectors, which we discussed in chapter 5. In this chapter, we’ll take a closer look at
how to enable secure communication by configuring this file.

 In chapter 5, you also learned that each web application has a standard WEB-INF/
web.xml deployment descriptor and a JBoss-specific WEB-INF/jboss-web.xml deploy-
ment descriptor. These files configure application security by defining which of your
application’s URLs are secured and by pointing to the security domain that should be
used to enforce the security constraints.

 The login-config.xml file contains security domain definitions. Security domains
compare security data on incoming requests to security data kept in security data-
stores, which security domains access using login modules. This file isn’t specific to
web security but is part of the underlying JBoss SX security framework. Table 6.1 sum-
marizes where you can find each file and what security aspects you can configure.

Figure 6.1 Three main files are used to configure security for web applications, in
addition to the login-config.xml file, which is used to configure security domains for
any application running in JBoss Web Server.

137Configuring web security
You’ve already seen the login-config.xml file in chapter 4. Let’s take a closer look at
the other three files to see how you can use them to configure web security. We’ll start
with the web.xml file.

6.1.1 Configuring security in web.xml

The standard web deployment descriptor,
web.xml, is used to specify application-level
authentication, authorization, and encryp-
tion. Figure 6.2 shows you the general struc-
ture of the elements in the web.xml file
pertinent to security configuration.

 The number in the upper-left corner
of each box represents the multiplicity
of the element, or how many of a given
element type can exist within the scope
of the enclosing element. For example, only
a single web-resource-collection can be
defined inside of a security-constraint,
but many security-constraints can be
defined inside of a web-app. Listing 6.1
shows you a sample web.xml with secu-
rity enabled.

Table 6.1 The four primary configuration files used to configure web security

Configuration file The configurable security aspects

WEB-INF/web.xml - a ■ The authentication strategy (BASIC,
FORM, DIGEST, or CLIENT-CERT)

■ Which URL patterns should be restricted
to which logical roles

■ A set of logical roles

WEB-INF/jboss-web.xml - a The JNDI name for the security domain that the
web application should use

server/xxx/deploy/jbossweb.sar/server.xml ■ The secure HTTP connector (SSL port,
keystore file, and so on)

■ The portion of the certificate compared
during CLIENT-CERT authentication

server/xxx/conf /login-config.xml ■ The definition for security domains
■ The login module that the security domain

should use

a. These files are relative to your application’s directory structure, not to the server’s root directory like the other files
listed in this table.

Figure 6.2 The security-related elements
in the standard web deployment descriptor,
web.xml

138 CHAPTER 6 Securing web applications
<web-app>
<security-constraint>
 <web-resource-collection>
 <web-resource-name>Some Resource</web-resource-name>
 <url-pattern>/*</url-pattern>
 <url-pattern>/shoppingcart/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>SomeSimpleRole</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>
 CONFIDENTIAL
 </transport-guarantee>
 </user-data-constraint>
</security-constraint>

<login-config>
 <auth-method>BASIC</auth-method>
</login-config>

<security-role>
 <role-name>SomeSimpleRole</role-name>
</security-role>
</web-app>

Security is added to specified URL patterns under the web-resource-collection ele-
ment. You use the http-method element C to specify which HTTP methods (usually
GET or POST) you want secured for the URLs that you’ve defined. You define the URLs
using the url-pattern element B. You can define more than one URL pattern for a
given web-resource-collection. As per the specification, the string value of a URL
pattern is treated as follows:

■ A string beginning with a / character and ending with a /* suffix is used for
path mapping.

■ A string beginning with a *. prefix is used for extension mapping.
■ A string containing only the / character indicates the default servlet of the appli-

cation. In this case, the servlet path is the request URI minus the context path,
and the path info is null.

■ All other strings are used for exact matches only.

After specifying which URLs are to be secured, you need to specify which roles are
authorized to access those URLs by defining roles under the auth-constraint block D.
In listing 6.1, a role called SomeSimpleRole is defined with the role-name element.
Roles are also defined separately under the security-role element G. We discuss
authorization further in section 6.3.

 If you secure a URL, it’s assumed that the user who’s trying to access it is authenti-
cated. You specify authentication for the entire web application using the login-config

Listing 6.1 A WEB-INF/web.xml file with security enabled

B

C

D

E

F

G

139Configuring web security
block F. JBoss provides four different authentication strategies that can be defined
using the auth-method attribute. We discuss these options further in section 6.2.

 You use the transport-guarantee element E to specify whether requests coming
into the application must be encrypted or not. We discuss secure communication fur-
ther in section 6.4.2.

 The web.xml file is used to define what URLs are to be secured but says nothing
about how to secure them. That’s the job of the security domain, which you define in
the login-config.xml file and point the application to in the jboss-web.xml file. Let’s
examine how to point to the security domain in the jboss-web.xml file.

6.1.2 Configuring security in jboss-web.xml

You can use the jboss-web.xml deployment descriptor to map an application to a secu-
rity domain. Let’s look at an example. Assume that you have a security domain
defined in your login-config.xml file that looks like the following:

<application-policy name="some-domain">
 ...
</application-policy>

The following jboss-web.xml shows how you’d point to this security domain:

<jboss-web>
 <security-domain>java:/jaas/some-domain</security-domain>
</jboss-web>

When the security framework reads the login-config.xml file, it creates a security
domain and binds it into JNDI under java:/jaas/some-domain. The security-
domain element in the jboss-web.xml file merely has to point to that security domain;
all this file does is map the application to the security domain. The bulk of the config-
uration is in the application’s web.xml file and the server’s login-config.xml file.

6.1.3 Configuring security in server.xml

In chapter 5, we introduced you to the server.xml file, the main configuration file for
JBoss Web Server. For security purposes, you might want to configure the connector
configurations in this file. In the out-of-the-box configuration, JBoss Web Server has a
secure HTTP connector that’s defined but commented out in the server.xml file. The
configuration for this connector looks something like this:

<Connector protocol="HTTP/1.1" SSLEnabled="true"
 port="8443" address="${jboss.bind.address}"
 scheme="https" secure="true" clientAuth="false"
 keystoreFile="${jboss.server.home.dir}/conf/chap8.keystore"
 keystorePass="rmi+ssl" sslProtocol = "TLS" />

If you uncomment this connector configuration and point it to a keystore containing
your server certificate, clients can access pages on your server over SSL. We talk about
this further in section 6.4. This file also contains configurations that can be used for
client-certificate authentication.

140 CHAPTER 6 Securing web applications
 JBoss Web Server also defines a realm inside of the server.xml file. The realm inte-
grates the JBoss Web Server into the JBoss SX security framework. The realm definition
in the server.xml file looks like the following:

<Realm className="org.jboss.web.tomcat.security.JBossWebRealm"
 certificatePrincipal="org.jboss.security.auth.certs.SubjectDNMapping"
 allRolesMode="authOnly" />

The certificatePrincipal attribute is used for client-certificate authentication,
which we talk about in section 6.5. The allRolesMode attribute is discussed further in
section 6.3.2.

 Now that you’ve learned about the different configuration files used to configure
web security, let’s take a closer look at how to authenticate web users.

6.2 Authenticating users
The great thing about Java EE authentication is that it can be applied to your applica-
tion without writing any code. When a user requests a secured URL (as defined in the
web-resource-collection in the web.xml file), the server detects if the user is
logged in or not using information stored on the user’s session. If the user tries to
access a secured URL, the container forces the user to login using the authentication
method defined for the application before displaying the page that the user
requested. Figure 6.3 illustrates this sequence of events.

When users request the Account Summary page, they’re not taken directly to the
page. The Account Summary page is secured and only allows access to users with cer-
tain roles. Here’s a description of the sequence of events in figure 6.3:

■ The web container asks the security framework if the page is secured; the frame-
work tells the container that it is.

■ The container forwards a login page to the user, who fills it out and submits it
back to the container.

Figure 6.3 The Java EE web security process for a user who’s requesting an account
summary page in a web application

141Authenticating users
■ The container asks the security framework if the user can access the page.
■ The security framework determines if the password that the user provided is the

same as that stored in the security datastore; if so, it also determines if the user
is authorized to access the Account Summary page.

■ If everything matches up, the user is shown his Account Summary page. If not,
then the user is taken to an error page.

One caveat: There’s no simple way to develop a mechanism that allows users to authen-
ticate from any given page. For example, you may try to create a website that displays a
login form on the top of every page—so long as the user isn’t authenticated—allowing
him to login whenever he chooses. This process doesn’t work because the container
must intercept a call to a secured URL for the security framework to determine if the
user is logged in or not, requiring you to rethink your page flow in an application.

 Only being able to see a login screen after attempting to load a secured resource
isn’t uncommon. Take Amazon.com, for example; they don’t allow you to directly
login from any page. They give you a sign-in link that takes you to a login page. After
logging in, you’re directed to your account summary. Yes, having a login form on each
page would make the login a one-step process, but this two-phase login procedure is
an idiom that most web users are accustomed to. And if millions of users on Ama-
zon.com aren’t bothered by it, your users should probably be okay with it too.

 One benefit to this model is that it’s easier for users to bookmark pages in your
application. Users should be able to bookmark URLs, even if they have to authenticate
in order to get to them and then access them later. If they try to access pages that they
bookmarked when they were logged in, the container prompts them to log in before
forwarding them to their requested pages. If their sessions are still active, they’re
directed to the pages without having to authenticate again.

 Now that you’ve seen the sequence of events that occur when a web user is authen-
ticated, let’s explore the different authentication strategies that JBoss provides.

6.2.1 Understanding the web authentication strategies

You can authenticate a user in an application in many ways, but prompting a user for a
password is the most common. Java EE defines two main password authentication
strategies that can be used by web applications: HTTP basic authentication and form-based
authentication. A third password-based strategy, digest authentication, is available in JBoss
but isn’t required by Java EE and is less commonly used. Above and beyond these strat-
egies, clients can be authenticated using a signed certificate with client-certificate authen-
tication (also called HTTPS client authentication).

 As we learned in section 6.1, the standard web deployment descriptor WEB-INF/
web.xml defines authentication using the login-config element. Here’s a reminder of
what that definition looks like in the web.xml file:

<login-config>
 <auth-method>BASIC</auth-method>
</login-config>

142 CHAPTER 6 Securing web applications
The auth-method element defines the authentication strategy for the application. The
allowed values are BASIC, FORM, DIGEST, and CLIENT-CERT. Table 6.2 summarizes these
values.

NOTE A web application can only have a single login-config block defined, so
you can only have a single authentication method for the application. If
you wish to have different authentication methods for different URLs in
your application, you must create multiple web applications and deploy
them to JBoss separately.

Basic authentication and form-based authentication are the most commonly used
authentication strategies, but there are two problems with using them over regular
HTTP. First, the user has no assurance of source integrity for the server. For example,
how does a user know if he’s accessing his bank’s web site or a spoofed web site put
together by a hacker? Second, the user’s password is vulnerable to interception because
these authentication methods don’t encrypt the password when it’s sent. This doesn’t
mean you shouldn’t use these authentication strategies; it does mean that you probably
want to provide access to your login page over secure HTTP (HTTPS). We discuss how
to enable HTTPS to provide secure, encrypted web communication in section 6.4.

 Let’s take a look at how to configure basic, digest, and form authentication. Client-
certificate authentication is more involved and is easier to understand after you’ve
gained background on how to configure the HTTPS connector and to set up protocol-
level client authentication. We dedicate all of section 6.5 to client-certificate authenti-
cation. We’ll start with basic authentication.

6.2.2 Basic authentication

HTTP basic authentication is a challenge-response protocol that’s part of the HTTP specifi-
cation. When a user requests a secured URL, the container determines if the user has

Table 6.2 The different web authentication strategies available in JBoss

Authentication
strategy

auth-method
value

Description

HTTP basic
authentication

BASIC This option uses HTTP basic authentication, which causes the
browser to pop up a modal dialog box prompting the user for
his password.

Form-based
authentication

FORM Form-based authentication is similar to basic authentication,
but an HTML page with a login form is sent to the browser for
the user to log in with.

HTTPS client
authentication

CLIENT-CERT If the client has a public-key certificate, the server verifies the
certificate using this strategy.

Digest
authentication

DIGEST This authentication mechanism causes the browser to present
a dialog box in the same fashion as basic authentication, but
the password is hashed in a digest that includes other informa-
tion before it’s sent to the server.

143Authenticating users
logged in yet. If he hasn’t, it challenges the
user to provide credentials by sending an
HTTP 401 message back to the user’s browser.
This HTTP 401 message causes the browser to
display a dialog box prompting the user for
his password. Figure 6.4 shows you a dialog
box that a web browser would show when it
receives the 401 message.

 When the user fills out the username
and password and submits the dialog box,
the browser encodes the information (using base64 encoding) and sends it back to
the web container for authentication against the security framework—the response
portion of the challenge-response.

 Basic authentication is configured in the WEB-INF/web.xml file using the following
login-config declaration:

<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>My Site</realm-name>
</login-config>

The auth-method element specifies that basic authentication should be used. The
realm-name element specifies descriptive text that’s sent back to the client upon
requesting a secured URL. This field gives the client a name to associate with the
secured part of the website that he is trying to access. Most browsers display the value
of the realm name in the dialog box that’s shown to the user.

 This strategy isn’t secure when used over insecure HTTP because the password sup-
plied to the dialog box isn’t encrypted before it’s sent to the server (base64 is an
encoding algorithm, not an encryption algorithm). Basic authentication can be used
securely with a server that enables HTTPS. In this case, the user can rest assured that
the information that he’s submitting over the wire is encrypted using the server’s pub-
lic key. We show how to configure HTTPS in section 6.4.

 Browsers often cache the username and password used to log into a website.
Although this may be a convenience to the user, the browser often takes the liberty of
automatically retransmitting the security credentials without prompting the user
again. This practice makes it difficult to enable a logout feature for your application
because the browser keeps logging the user back in.

 Because of the inability to control logging out and the lack of integration with a
site’s look and feel, we’ve rarely seen or used basic authentication in larger enterprise
applications. That being said, basic authentication is simple to set up and is often used
in smaller applications, particularly internal company applications with few users. To
bypass the inability to log out and the lack of integration with a site’s look and feel, use
form-based authentication. Let’s take a look.

Figure 6.4 A dialog box is shown when
basic authentication is used and the user’s
credentials are needed.

144 CHAPTER 6 Securing web applications
6.2.3 Form-based authentication

Most websites provide a login screen that integrates with the site’s look and feel rather
than using the dialog box that basic authentication uses. With form-based authentica-
tion, the container still determines whether or not the user has logged in; but instead
of prompting the user for login information using a browser dialog box, an HTML
page containing a login form is sent. The user fills out the HTML form and submits it
back to the server. This HTML page can have any format as long as it has a form that
has the required form elements, as shown in listing 6.2.

<form name="loginForm" method="post" action="j_security_check">
<table>
 <tr>
 <td>User Name:</td>
 <td><input type="text" name="j_username"></td>
 </tr>
 <tr>
 <td>Password:</td>
 <td><input type="password" name="j_password"></td>
 </tr>
 <tr colspan="2" >
 <td><input type="submit" value="login"></td>
 </tr>
</table>
</form>

As shown in the code listing, the form’s action must contain the value
j_security_check and a text box for the username and password with the name attri-
butes set to j_username and j_password, respectively.

 Form-based authentication can be enabled in web.xml using a login-config dec-
laration similar to the following:

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/restricted/login.html</form-login-page>
 <form-error-page>/restricted/bad-login.html</form-error-page>
 </form-login-config>
</login-config>

The value of auth-method must be equal to FORM to enable form-based authentication.
The form-login-config element is used to define the login page that the user should
be forwarded to when he’s prompted for a password. It also allows you to define an
error page that the user is forwarded to if the login is unsuccessful.

 Like basic authentication, form-based authentication is also insecure when used
over HTTP, so you may want to enable secure HTTP as discussed in section 6.4.

 We’ve talked about basic and form-based authentication, which are both insecure.
Now let’s talk about digest authentication, which is similar to basic authentication, but
is more secure.

Listing 6.2 An HTML form used for form-based authentication

Required

145Authenticating users
6.2.4 Digest authentication

Digest authentication is a challenge-response authentication scheme like basic
authentication. But with digest authentication, the password isn’t sent over the net-
work in clear text. The client uses an MD5 hashing function to hash the password (and
other data) in a string known as a digest. The digest is then sent to the server, which
compares it to a saved MD5 representation of the digest that it has in its security data-
store for the user.

 With basic authentication, a hacker can easily snoop a request to obtain a user’s
password or to perform a replay attack. Replay attacks occur when a hacker snoops the
request and resubmits it later or modifies and resubmits it to get other information
besides what was in the snooped request. Digest authentication uses a security tech-
nique called a nonce, or a session token, to make replay attacks difficult.

 Although digest authentication gives you a slight security advantage over basic
authentication, the advantage isn’t that great. Besides the data that goes in the digest,
none of the other data in the response is hashed; therefore, digest authentication isn’t
considered strong encryption. If you want to have truly secure access, you should
make sure that your client and server are communicating over a secure channel such
as SSL or TLS.

 If you do decide to use digest authentication, you need to specify an authentica-
tion method in your application’s WEB-INF/web.xml file similar to the following:

<login-config>
 <auth-method>DIGEST</auth-method>
 <realm-name>Default</realm-name>
</login-config>

The realm-name has the same purpose in digest authentication as it does in basic
authentication. After defining the WEB-INF/web.xml, you also need to define a secu-
rity domain in your server/xxx/conf/login-config.xml file that specifies some digest-
specific options. Listing 6.3 shows you an example of the settings you could use if you
define a security domain using the UsersRolesLoginModule.

<application-policy name = "jmx-console">
<authentication>
<login-module
 code="org.jboss.security.auth.spi.UsersRolesLoginModule"
 flag = "required">
 <module-option name="usersProperties">
 props/jmx-console-users.properties</module-option>
 <module-option name="rolesProperties">
 props/jmx-console-roles.properties</module-option>
 <module-option name="hashAlgorithm">MD5</module-option>
 <module-option name="hashEncoding">rfc2617</module-option>
 <module-option name="hashUserPassword">false</module-option>
 <module-option name="hashStorePassword">true</module-option>
 <module-option name="passwordIsA1Hash">true</module-option>

Listing 6.3 A security domain that can be used to enable digest authentication

146 CHAPTER 6 Securing web applications
 <module-option name="storeDigestCallback">
 org.jboss.security.auth.spi.RFC2617Digest</module-option>
</login-module>
</authentication>
</application-policy>

When you store your passwords in your datastore (file, database, LDAP, and so on),
you need to make sure that you store the hashed, MD5 version of the password instead
of the clear text password. To obtain the hashed version of the password, you go to the
server/default/lib directory and execute the following command:

java -classpath jbosssx-server.jar

➥ org.jboss.security.auth.spi.RFC2617Digest username realm password

The output for this command is your hashed password, which you store in your secu-
rity datastore. Make sure that you substitute the username, realm, and password
parameters with the information for the user whose encrypted password you want to
determine. Also note that you’ll have to put quotes around the realm if it consists of
multiple words.

Many operating system command-line shells store commands in a history
file to make it easier to recall previous commands. Generating the digest
password from such a shell causes the username and password to be
stored in the history file and, possibly, retrieved by an intruder. You
might consider clearing the history file after running the command to
create the digest. Also, someone snooping on a system might be able to
pick up the command line that you’re executing via execution of a com-
mand or utility that shows the processes running on your machine, such
as the ps command on UNIX. To be safer, you can put the sensitive data
in a file and redirect it as input into the command that creates the digest.
You can lock down file permissions or delete the file after running the
command to protect yourself further.

You now know how to enable authentication for web applications. Let’s look at how to
enable web authorization.

6.3 Authorizing users
After users are authenticated, the web container must see if they’re authorized to
access the information they requested. In this section, we explain the fundamentals
of how to configure authorization, and then we dive into a more specific discussion
on how to authorize any authenticated user to view a particular URL. Let’s start with
the basics.

6.3.1 Configuring authorization

Authorization for web application is specified in your application’s WEB-INF/web.xml
file by associating role names with URL patterns. Listing 6.4 shows you the portion of a
web.xml file used to configure authorization.

WARNING

147Authorizing users
<security-constraint>
 ...
 <auth-constraint>
 <role-name>SomeSimpleRole</role-name>
 <role-name>SomeOtherRole</role-name>
 </auth-constraint>
</security-constraint>
...
<security-role>
 <role-name>SomeSimpleRole</role-name>
</security-role>
<security-role>
 <role-name>SomeOtherRole</role-name>
</security-role>

Any requests made on a secured URL defined within a web-resource-collection of a
security-constraint block require the user to be a member of one of the roles spec-
ified under the auth-constraint block using the role-name element B. You can specify
multiple roles in one auth-constraint block; but if you want to specify different roles
for different URL patterns, you must specify multiple security-constraint blocks.

 Later on in the file, we declare each security role that we referenced in our security-
constraint configuration using security-role declarations C. This second defini-
tion of the role in the security-role block isn’t generally required by JBoss Web Server
but is often added so that an application is portable across the Java EE applications
server. The second definition is necessary when we want to use a role-name of * (an
asterisk) to grant access to any authenticated user. Let’s talk about how this works.

6.3.2 Allowing access to any authenticated user

If you want to allow any authenticated user to access a given URL, you can specify an
asterisk as your role-name. Listing 6.5 shows you an example of this using the secu-
rity-constraint definition in your web.xml file.

<security-constraint>
 ...
 <auth-constraint>
 <role-name>*</role-name>
 </auth-constraint>
</security-constraint>
...
<security-role>
 <role-name>SomeSimpleRole</role-name>
</security-role>

Notice that the value of the role-name attribute in the auth-constraint block is
equal to * (an asterisk) B. But what does that mean exactly? It means that any authen-
ticated user can access the given URLs or that you only want to allow access to user

Listing 6.4 The portion of a web.xml file used to configure authorization

Listing 6.5 Allowing any user to access a URL pattern

Required role
definition

B

Optional role
definition

C

B Asterisk grants
access to all users

C A standalone
role definition

148 CHAPTER 6 Securing web applications
roles defined in the standalone role-name definitions C. The exact behavior can be
controlled in the realm definition in JBoss Web Server’s server.xml file. As we dis-
cussed in section 6.1.3, the realm definition looks like this:

<Realm className="org.jboss.web.tomcat.security.JBossWebRealm"
 certificatePrincipal="org.jboss.security.auth.certs.SubjectDNMapping"
 allRolesMode="authOnly" />

The allRolesMode attribute in the server.xml determines the behavior when a web
application defines an auth-constraint block with a role-name equal to * in its
web.xml file. Table 6.3 summarizes the three available settings for the allRolesMode
attribute.

Note that the allRolesMode setting is made in the server.xml file, so the settings apply
to all web applications running in the server.

 We’ve covered authentication and authorization in web applications; now let’s turn
to the server and see how we can secure the HTTP connector to enable secure
communication.

6.4 Encrypting web communication
As we discussed in chapter 4, SSL is a certificate-based protocol that enables encryp-
tion as well as source authentication. Web applications can enable SSL to prevent
eavesdropping and to assure users that the applications are hosted by the correct site.

 In this section, we’ll show how to enable SSL communication by defining a secure
HTTP connector. After that, we’ll talk about how to ensure that secure requests that go
to an insecure connector get rerouted to a secure connector. We’ll finish by talking
about how to enable mutual authentication for greater client source integrity.

 Let’s start by talking about how to define a secure HTTP connector.

6.4.1 Enabling HTTPS

To handle HTTPS requests, you must do the following:

■ Create or obtain a certificate for your server.
■ Make sure that certificate is in a keystore.

Table 6.3 The configuration options for the allRolesMode attribute in web.xml

allRolesMode option Description

strict This option interprets the servlet specification strictly by requiring that
the user be in a role defined by a role-name element in the web.xml
file (as shown in in listing 6.5).

authOnly Allows any authenticated user.

strictAuthOnly Because the security-role definition (as shown in in listing
6.5) is optional in JBoss Web Server, you can use this setting to get
strict behavior when security-role elements are defined and
authOnly behavior when none is defined.

C

C

149Encrypting web communication
■ Define a secure HTTP connector.
■ Point the connector to your keystore.

In order to enable HTTPS in JBoss Web Server, you have to obtain or create a keystore
with a certificate for your server. You can create a self-signed certificate, or you can
obtain a certificate from a certificate authority as we discussed in chapter 4. If you use
keytool, the command will look similar to this:

keytool -genkey -alias serverCert -keyalg RSA -validity 1500 -keystore
➥ server.keystore

When you create a server keystore to be used by JBoss Web Server, you
must match the keystore password and the password for the key. If you
don’t, you’ll get an exception that looks like this: java.io.IOException:
Cannot recover key. See the Tomcat 6.0 SSL How-to reference at the end
of this chapter for more details.

After creating the keystore with a certificate in it, you must set up a connector in JBoss
Web Server to listen for the SSL traffic. We discussed how to configure JBoss Web
Server connectors in the server.xml file in chapter 5. Out of the box, JBoss Web
Server’s server.xml configuration file defines an HTTP connector, but it’s commented
out. If you uncomment this connector, you can use it to enable HTTPS for the server.
Listing 6.6 shows you an example of a secured HTTP connector.

<Connector port="8443"
 ...
 scheme="https"
 secure="true"
 clientAuth="false"
 keystoreFile="${jboss.server.home.dir}/conf/server.keystore"
 keystorePass="serverpass"
 sslProtocol = "TLS" />

The scheme B attribute defines the protocol scheme you’re using. If unspecified, the
default is http. To configure a secure SSL connector, you set it to https. The value of
this attribute is returned when the request.getScheme() method is called from
within your application code. Set the secure C attribute to true to inform JBoss Web
Server that you’re configuring a secure connector. The value of this Boolean attribute
is returned when the request.isSecure() method is called from within your applica-
tion code. Set the clientAuth D attribute to false if you want the client to authenti-
cate the server’s certificate. If you want to do mutual authentication, you can set it to
true. See section 6.4.3 for further details. The keystoreFile E and keystorePass F
attributes define the location of the keystore file containing the server’s certificate
and the password for the keystore file, respectively. The sslProtocol attribute G
specifies the version of the SSL protocol to use. It defaults to TLS.

 The keystoreFile attribute uses a system variable called ${jboss.server.
home.dir} to reference the root directory of the server configuration that you’re

Listing 6.6 A secure HTTP connector that points to keystore

WARNING

B
C

D
E

F
G

150 CHAPTER 6 Securing web applications
running. In the example, the keystore is in a file called server.keystore in the server
configuration’s conf directory. The keystorePass attribute should be set to the pass-
word that was created for the keystore and key pair, which JBoss Web Server expects to
be the same.

 After enabling this connector, clients can access your secure server using their web
browsers. They should be able to point to any web application that you have running on
the server and access it securely over SSL. Based on the port configured in the example,
clients have to provide a URL to the browser that might look like the following:

 https://www.myfakebank.com:8443/bankingapp/AccountSummary

Notice that the protocol in this URL is https (not http), and the port is set to 8443
(not 8080, which the default HTTP connector is configured to). If you configure the
connector for a different port, clients must point to that port.

 Many times a secure request will get routed to an insecure connector. If this is the
case, you want to make sure that the insecure connector can reroute the request to a
secure connector.

6.4.2 Enabling transport guarantees

Pop quiz: Can a user access your application through different connectors? The answer
is yes. If you have an HTTP connector and an HTTPS connector, the user could access
your application through either one. But what if you want an application to only be
accessed securely? Java EE defines a mechanism called a transport guarantee that allows
you to specify this. The transport guarantee is defined in the security-constraint ele-
ment in your application’s standard web deployment descriptor, WEB-INF/web.xml.

 If a transport guarantee is enabled and a user tries to access your application
through an insecure connector, the connector forwards the request to the port speci-
fied by the redirectPort attribute. (For this to work, you have to configure a secured
connector on the port that you’re redirecting to.)

 Let’s say that you have a banking application and intend for users to access the
account summary through SSL using the following URL:

 https://www.myfakebank.com:8443/bankingapp/AccountSummary

What would happen if a user tried to access the account summary using the following
URL instead?

 http://www.myfakebank.com:8080/bankingapp/AccountSummary

By default, a user could access the account summary using either protocol. But if you
want to require that the account summary URL be accessed over SSL, you can specify a
transport guarantee. If your application specifies a transport guarantee for a particu-
lar URL and an attempt is made to access that URL through the HTTP or AJP connec-
tor, then JBoss Web Server forwards the request to a secure connector.

 Figure 6.5 shows you the sequence of events that occurs when trying to access a
URL with a transport guarantee through an insecure port.

151Encrypting web communication
1 When an insecure request comes to the server, the HTTP connector handles it
(the default port is 8080).

2 The connector forwards the request to the container, which detects that the des-
tined web application is marked as having a confidential transport guarantee.

3 Further processing of the request is passed on to the redirect port defined for the
insecure connector. The redirect port is set to that of the secure HTTP connector.

4 The secure HTTP connector does the SSL handshaking and then handles the
request for the client.

5 The response redirects the client’s browser to point to the secure protocol and
port where the HTTPS connector is listening.

Both the default HTTP connector and the default AJP connector are configured to
redirect to port 8443 upon receiving a secure request. Here’s what the HTTP connec-
tor looks like:

<Connector protocol="HTTP/1.1" port="8080"
 address="${jboss.bind.address}"
 connectionTimeout="20000"
 redirectPort="8443"
/>

In this example, the port configured under the connectors redirectPort attribute B
is used to forward secure requests to the secure HTTPS connector configured on
port 8443.

 The transport guarantee itself is defined in the security-constraint block in
your application’s WEB-INF/web.xml file, as follows:

<security-constraint>
 ...
 <user-data-constraint>
 <transport-guarantee>
 CONFIDENTIAL
 </transport-guarantee>
 </user-data-constraint>
</security-constraint>

The value of the transport-guarantee element can be one of three options: CONFI-
DENTIAL, INTEGRAL, and NONE. A setting of CONFIDENTIAL specifies that the application

Figure 6.5 Accessing a URL with
a transport guarantee through an
insecure port

B

152 CHAPTER 6 Securing web applications
requires that data be transmitted to prevent other entities from observing the con-
tents of the transmission. A setting of INTEGRAL means that the data sent between a cli-
ent and the server can’t be changed in transit. As far as JBoss Web Server is concerned,
if the transport guarantee is set to CONFIDENTIAL or INTEGRAL, insecure requests for
the URLs defined in the security-constraint block get redirected to the secure con-
nector (using SSL). Setting the transport guarantee to NONE is the equivalent of not
setting the transport guarantee at all.

 Now that you’ve seen how transport guarantees work, let’s talk about how a server
can mutually authenticate a client who has their own certificate installed in their web
browser.

6.4.3 Enabling mutual authentication

So far, we’ve talked about server authentication, where a user validates the identity of
a server’s certificate and uses that certificate to communicate with the server over a
secure channel. Some applications require a more secure method of authenticating
clients than only a password. A client with a signed certificate provides better source
integrity than only a password. As we discussed in chapter 4, SSL allows the client and
the server to authenticate each other in a mutual authentication scheme. Applications
that need mutual authentication are generally not public websites but intranet appli-
cations or business-to-business applications with limited numbers of users.

 Figure 6.6 shows you how mutual authentication requires the clients to have certif-
icates and requires the server to have a certificate and a truststore with the client cer-
tificates in it.

 To do mutual authentication, you have to create certificates (either self-signed or
purchased from a certificate authority) for your clients, typically one for each. These
certificates have to be imported into the server’s truststore. You can either add them
to the Java Runtime Environments’ (JRE) primary truststore (the cacerts file if you’re
using Sun’s JRE), or you can put the certificates in a new truststore and point to it in
the HTTPS connector.

 We outlined how to create certificates and keystores using the keytool that ships
with most JDKs in chapter 4. Here are the steps you take to enable mutual authentica-
tion with a self-signed client certificate:

Figure 6.6 To set up mutual
authentication, the client has a
certificate, and the server has a
certificate in a keystore and the
clients’ certificates in a truststore.

153Encrypting web communication
1 Create a server certificate—If you use keytool to generate a self-signed certificate
on the server machine, this certificate is automatically placed within a keystore.
Here’s an example of the command that you’d run:

keytool -genkey -alias serverCertificate -keyalg RSA -validity 1500
➥ -keystore server.keystore

2 Create a client certificate—If you use keytool to generate a self-signed certificate
on the client machine, this certificate is automatically placed within a keystore.
Here’s an example of the command that you run:

keytool -genkey -alias clientCertificate -keyalg RSA -validity 1500
➥ -keystore client.keystore

3 Export the client certificate from the keystore (on the client)—You export the certificate
so that you can import it into a truststore used by the server. In the following
example, you export the certificate to a file called client.cer:

keytool -export -alias clientCertificate -keystore client.keystore

➥ -file client.cer

4 Import certificate into browser—Convert the certificate to a format compatible with
the client’s browser (see next section) and import the certificate into the cli-
ent’s browser.

5 Create server truststore—Copy the client certificate (client.cer in this case) to
the server and import the client certificate into a truststore (on the server).

keytool -import -alias clientCertificate -keystore server.truststore

➥ -file client.cer

6 Configure the HTTPS connector—Point to the server truststore and server keystore in
the HTTPS connector definition in JBoss Web Server’s server.xml file and set the
clientAuth attribute to true.

<Connector protocol="HTTP/1.1" SSLEnabled="true" port="8443"
 address="${jboss.bind.address}" scheme="https" secure="true"
 clientAuth="true"
 keystoreFile="${jboss.server.home.dir}/conf/server.keystore"
 keystorePass="server-keystore-pass"
 truststoreFile="${jboss.server.home.dir}/conf/server.truststore"
 truststorePass="server-truststore-pass"
 sslProtocol="TLS" />

Note that setting clientAuth to true causes JBoss Web Server to authenticate the cli-
ent’s certificate at the protocol level. If the users access a secured page, they still need
to provide a password to authenticate at the application level. We mentioned earlier
that you might need to convert your certificate to a different format in order for your
browser to support it. Let’s talk about that.

6.4.4 Creating browser certificates

If you want the server to authenticate a client browser, the browser needs a certificate.
Whether you create a self-signed certificate or get one from a certificate authority, you
probably have to convert the certificate into a different format to import it into your

154 CHAPTER 6 Securing web applications
browser. Most major web browsers support the PKCS12 certificate format. Although it’s
not difficult to do, there are quite a few steps, precluding us from covering the specif-
ics within the scope of this book. But we do have a reference to the JBoss Wiki at the
end of this chapter that shows you how to convert X509 certificates created by keytool
to PKCS12 certificates using a tool called openssl. We also show you how to convert the
certificate format in the source code that ships with the book.

 So far, we’ve been using certificates to authenticate at the protocol level. If you
want to use the client’s certificate as the credential to authenticate users on the server,
you can enable client-certificate authentication, which we’ll talk about next.

6.5 Enabling client-certificate authentication
In chapter 4, we introduced you to client-certificate authentication, a mechanism by
which you can use a client’s public key certificate as an authentication credential.
When communicating with a web server, this certificate must be installed in the cli-
ent’s browser. Web-based client-certificate authentication only works if a secured
HTTP connector handles the client’s request. Information in the certificate is passed
to the security domain to authenticate and authorize the user at the applica-
tion level.

NOTE Keep in mind that client-certificate authentication gives you greater
source integrity but doesn’t necessarily do a good job of asserting a
human user’s identity. For example, if you have a certificate on your
machine and use it to authenticate against a server using client-certificate
authentication, somebody else could sit behind the keyboard, and the
server wouldn’t know, care, or ask him to prove who he is. One way to
verify a client certificate and challenge the user for a password is to set
clientAuth to true in the secure HTTP connector as we discussed in sec-
tion 6.4.3; then use FORM, BASIC, or DIGEST authentication to secure vari-
ous URLs. The secure HTTP connector takes care of the source
authentication at the protocol level by using mutual authentication while
the application-level authentication challenges the user for a password.
You have the best of both worlds. The only caveat is that all connections
to the secure server require client certificates, whether or not they’re
going to a secured resource.

To enable client-certificate authentication, you must follow these steps:

■ Enable protocol-level mutual authentication as described in section 6.4.
■ Set the authentication method in your web application to CLIENT-CERT.
■ Define a security-domain MBean that points to the keystore containing the

server certificate.
■ Define the security domain in the login-config.xml file.
■ Point to the security domain in the applications jboss-web.xml file.
■ Select a strategy for forming the principal from the certificate.

155Enabling client-certificate authentication
■ Add principals and roles to the security datastore.
■ Add the client certificate to the server’s truststore.
■ Create a browser certificate.

The following sections describe each of these steps in more detail.

6.5.1 Enabling protocol-level mutual authentication

Follow all the steps for enabling mutual authentication for the secure HTTP connec-
tor that we talked about in section 6.4. Note that the clientAuth attribute doesn’t
have to be set to true in the server.xml file in order to carry out client-certificate
authentication because client-certificate authentication works at the application level,
not the protocol level. The security domain in the next step takes care of the client
authentication if and when it’s needed. Set the clientAuth option to false if some
URLs on your server should be accessible by clients without a certificate. Set it to true
if you want all clients to at least be mutually authenticated by their browser certifi-
cates; then you can secure the URLs that you want to restrict access to in each applica-
tion’s WEB-INF/web.xml file.

6.5.2 Setting the authentication method

Your application’s WEB-INF/web.xml must define the following login-config

declaration:

<login-config>
 <auth-method>CLIENT-CERT</auth-method>
</login-config>

Notice the auth-method is set to CLIENT-CERT, telling JBoss Web Server to authenticate
the user based on his certificate.

6.5.3 Specifying the JaasSecurityDomain MBean

As we discussed in chapter 4, to create an SSL-enabled security domain, you must
define a JaasSecurityDomain MBean. Create a file in the deploy directory that ends
in -service.xml (for example, mysecuritydomain-service.xml). Listing 6.7 shows you
what the contents of this file should look like.

<server>
 <mbean code="org.jboss.security.plugins.JaasSecurityDomain"
 name="jboss.security:service=SecurityDomain">
 <constructor>
 <arg type="java.lang.String" value="simple-security-domain"/>
 </constructor>
 <attribute name="KeyStoreURL">
 ${jboss.server.home.dir}/conf/server.truststore
 </attribute>
 <attribute name="KeyStorePass">serverpass</attribute>

Listing 6.7 Defining an MBean to create an SSL-enabled security domain

156 CHAPTER 6 Securing web applications
 <depends>jboss.security:service=JaasSecurityManager</depends>
 </mbean>
</server>

Remember the value of the value attribute you used for your constructor argument
because you’ll refer to it in the next step. Make sure that the KeyStoreURL and the
KeyStorePass attributes point to the server’s truststore that you created as part of the
first step.

6.5.4 Specifying the security domain

Now you need to define a security domain in the login-config.xml file or in your
dynamic login configuration file. You want to use the BaseCertLoginModule and stack
it with another login module for authorization as we described in chapter 4. See an
example of how this might look in listing 6.8.

<application-policy name="simple-security-domain">
 <authentication>
 <login-module code="org.jboss.security.auth.spi.BaseCertLoginModule"

 flag="required">
 <module-option name="password-stacking">useFirstPass</module-option>
 <module-option name="securityDomain">

➥ java:/jaas/simple-security-domain</module-option>
 </login-module>
 <login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"

 flag="required">
 <module-option name="password-stacking">useFirstPass</module-option>
 <module-option name="usersProperties">myusers.properties

➥ </module-option>
 <module-option name="rolesProperties">myroles.properties

➥ </module-option>
 </login-module>
 </authentication>
</application-policy>

Note that the securityDomain module option points to the full JNDI name for the
security domain. The part that comes after java:/jaas/ must match the constructor
argument that you passed into the security domain MBean you created in the last step.

6.5.5 Pointing to the security domain from the application

Now that you set up the security domain and the connector allows access over HTTPS,
your web application needs to make use of the security domain. Your application’s
WEB-INF/jboss-web.xml file must point to the security domain, as follows:

<jboss-web>
 <security-domain>java:/jaas/simple-security-domain</security-domain>
</jboss-web>

As we discussed in section 6.1.2, you must make sure that the value of the security-
domain element is the same as that defined in your login-config.xml file. In this case,

Listing 6.8 Stacking BaseCertLoginModule with UsersRolesLoginModule

157Enabling client-certificate authentication
the name attribute of the application-policy element in the login-config.xml file is
simple-security-domain.

6.5.6 Selecting a strategy for forming the principal from the certificate

With password-based authentication, the user types in a username as a principal and a
password as the credential. When implementing client-certificate authentication, it
makes sense to use the certificate’s public key as the credential, but what would you
use as the principal itself? If you look at the structure of a certificate, you could use
several parts of the certificate to represent the principal. In JBoss Web Server, you
can choose which part to use by configuring the realm setting in the JBoss Web
Server’s server.xml file. We talked about the realm in section 6.1.3, but let’s take
another look at it.

<Realm className="org.jboss.web.tomcat.security.JBossWebRealm"
 certificatePrincipal="org.jboss.security.auth.certs.SubjectDNMapping"
 allRolesMode="authOnly" />

The certificatePrincipal attribute configures which part of the client’s certificate
should be used as the principal. Out of the box, the certificatePrincipal attribute
is set to the SubjectDNMapping option shown. This option uses the certificate’s entire
Distinguished Name (DN) record. Table 6.4 shows you what other options you have.

We recommend trying the SubjectCNMapping option because it’s the easiest to set up
in your underlying security datastore where you store your principals and credentials.
The option you define determines what part of the certificate is parsed and passed in
as the principal to the login modules that authenticate and authorize the principal.
You must make sure that this part of the certificate is stored in your underlying autho-
rization datastore as well.

6.5.7 Adding principals and roles to the authorization datastore

You must add the principal and roles to the underlying authorization datastore (which
the login module stacked with the BaseCertLoginModule points to, as discussed in

Table 6.4 The different parts of the certificate that can be used for client-certificate authentication

certificatePrincipal option
Part of the certificate used

as principal

org.jboss.security.auth.certs.SerialNumberIssuerDNMapping The serialNumber and
issuerDN

org.jboss.security.auth.certs.SubjectCNMapping The value of the
SubjectDN’s CN element

org.jboss.security.auth.certs.SubjectDNMapping The entire SubjectDN

org.jboss.security.auth.certs.SubjectX500Principal The
SubjectX500Principal

158 CHAPTER 6 Securing web applications
step 4). The data that you populate into the datastore depends on the strategy you
selected for forming the principal name using the certificatePrincipal attribute
described in step 6. For example, if you used the SubjectCNMapping option, then you
add users that match the names in the Common Name (CN) element of the certificate.
Let’s say you have a certificate with the following output:

> keytool –printcert –file client.cer
Certificate stored in file <client.cer>
Owner: CN=Joe Schmoe, O=SomeCA, OU=SomeCAOrg
Issuer: CN=Joe Schmoe, O=SomeCA, OU=SomeCAOrg
Serial number: 47a22427
Valid from: Thu Jan 31 13:40:23 CST 2008 until: Sat Mar 10 13:40:23 CST 2012
Certificate fingerprints:
 MD5: BA:82:F1:83:A8:13:82:F5:0F:67:00:99:13:48:1C:B7
 SHA1: 14:A7:00:3A:EB:EE:3D:E3:EF:67:C9:68:16:22:D3:53:ED:84:D4:4E

If you used SubjectCNMapping in your server.xml realm and a UsersRolesLoginMod-
ule in your login-config.xml, the property file you use to store your roles might look
like this:

 joe\ schmoe=rolea, roleb

The CN value in the certificate is Joe Schmoe, with camel-case lettering, but note the
lowercase lettering to define the principal in the datastore. When JBoss parses the
principal off of the certificate, it converts it to lowercase before comparing it to the
value in the datastore, so you must add the name to your authorization datastore in
lowercase letters. You also have to use an escape character (backslash) to support the
space. You may have to do the same to support equals signs or other delimiters.

 Although you stacked the UsersRolesLoginModule with the BaseCertLoginModule,
you need an empty user properties file to exist. You may face a similar case for other
login modules.

6.5.8 Adding the client’s certificate to the server’s truststore

The truststore you pointed to in step 3 is the authentication datastore, so you must
import each client’s certificate into the truststore. You can use the keytool command
to do this, as follows:

keytool -import -alias "Joe Schmoe" -keystore server.truststore –file
➥ client.cer

The alias that you use must match the principal that would be parsed by the security
framework. The alias acts as the principal name and the certificate acts as the creden-
tial. The value you use for the alias depends on the certificatePrincipal option
you used in step 6. The code snippet shows what it might look like if you used the
SubjectCNMapping value for the certificatePrincipal.

6.5.9 Creating a browser certificate

As described in section 6.4.4, you have to convert each client’s certificate to a format
that your browser can handle.

159Summary
 So far, we’ve shown you examples where applications point to a specific security
domain, but you may decide that you want a particular domain applied if no application-
specific security domain is specified.

6.6 Changing the default security domain
If you don’t configure a security domain for an individual web application in the jboss-
web.xml file but have defined security for various components in your web.xml file, then
JBoss defaults to the security domain configured using the defaultSecurityDomain
property of the WarDeployer bean defined in the following web server microcontainer
configuration file:

 server/xxx/deployers/jbossweb.deployer/META-INF/war-deployers-jboss-beans.xml

Out of the box, the default security domain is configured as follows:

<property name="defaultSecurityDomain">
➥ java:/jaas/jboss-web-policy</property>

This property points to the security domain jboss-web-policy, which is defined in the
server/xxx/deploy/security/security-policies-beans.xml file. This security domain is
an extension of the other security domain defined in the server/xxx/conf/login-
config.xml file. The other security domain is configured to load usernames and roles
from files using the UsersRolesLoginModule. If you plan on using the default security
domain, you may want to define your own security domain in the login-config.xml file
and point the DefaultSecurityDomain attribute to it. Otherwise, you might change or
remove the definition for the default security domain.

6.7 Summary
We started this chapter by talking about the various configuration files used to config-
ure security in web applications and how to tie that configuration in with the security
domain configuration you learned about in chapter 4. We then gave a background on
how challenge-response authentication works for web applications and talked about
the three challenge-response authentication mechanisms available in JBoss Web Server.
We showed how to configure basic authentication, digest authentication, and form
authentication and talked about the benefits and drawbacks to each.

 Next, we talked about authorization and showed how to configure role-based
access for different URLs. We also showed how to configure a URL so that any authen-
ticated user could access it, regardless of role assignment.

 After learning about authentication and authorization, you learned how to encrypt
web communication. We talked about how to enable HTTPS by configuring the HTTP
connector to reference a secure certificate. You then learned how to enable a trans-
port guarantee on an application to make sure that it can only be accessed over a
secure channel. Last, you learned about mutual authentication and how the server
can verify a browser certificate during the protocol handshaking.

 Building on your fundamental knowledge of authentication and encryption, we
taught you how to enable client-certificate authentication, whereby information on a

160 CHAPTER 6 Securing web applications
client’s certificate can be used as a client’s credentials. You learned how to change the
default security domain that web applications are configured to use.

 The nice thing about JBoss security is that a user who logs in through the web tier
of an application doesn’t have to re-authenticate against the EJB tier. As you’ll see
when we discuss EJB security in the next chapter, the EJB server integrates into the
same JBoss SX security framework and implements a similar configuration model.

6.8 References
Digest Access Authentication—http://www.zvon.org/tmRFC/RFC2069/Output/

longContents.html
Creating a PKCS12 certificate for Firefox—http://wiki.jboss.org/community/docs/DOC-11989
Tomcat SSL How-to—http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html

http://www.zvon.org/tmRFC/RFC2069/Output/longContents.html
http://www.zvon.org/tmRFC/RFC2069/Output/longContents.html
http://wiki.jboss.org/community/docs/DOC-11989
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html

Configuring
 enterprise applications
Many small web applications can be written entirely using JSPs and servlets, pack-
aged as a WAR file, and deployed into JBoss or even a JSP/servlet container such as
Tomcat. But you should consider several limitations about this architecture if your
application is going to grow to be more than a simple web application. First, if your
application is going to have multiple interfaces or integration points, you’ll want to
separate your business logic from your web presentation code by pulling the logic
out of your servlets. Decoupling the business logic from the presentation allows
you, for example, to enable a travel booking site to use Web Services to call the
same business logic as that used by your hotel reservations web application. Simple

This chapter covers
■ Packaging and deploying enterprise applications
■ Configuring the EJB server
■ Configuring the EJB containers
■ Configuring JPA / Hibernate
■ EJB remoting and JNDI
■ EJB security
161

162 CHAPTER 7 Configuring enterprise applications
web applications also need a lot of boilerplate application logic that’s practically the
same for almost any enterprise-ready application such as security, remoting, and trans-
action management.

 As Java-based server applications became popular in the late ’90s, people realized
the ubiquity of these concerns, and the EJB specification was created in response to
enable server-side application component development. The current, and relatively
new, version of EJB is EJB3. If you’ve been in the Java world for a while, you may have
either used previous versions of EJB or been told to stay away from them altogether.
For example, one of the main problems was that the options available for persistence
left many application developers with complex and/or non-performant code, causing
many people to avoid EJB persistence altogether.

 By polling the Java developer community, learning from popular lightweight
frameworks such as Hibernate and Spring, and taking advantage of new language fea-
tures such as annotations, the specification team created the new, lightweight EJB3
specification. EJB3 applications are simple to develop and unit-test in comparison to
older versions of the EJB specification. Above all, persistence is greatly improved
through a completely new persistence specification known as the Java Persistence API
(JPA). There’s still a stigma around the standard, an unfortunate preconception
because the newer EJB3 specification has tremendous benefits over the old one.

 JBoss initially started as an EJB server, which is arguably its most popular feature to
this day. In this chapter, we talk about how the EJB server works and how you can con-
figure the various features to support your development and deployment needs. We
focus our discussion on configuring application services related to session beans and
entities. In chapter 8, “JBoss Messaging,” we’ll cover message-driven beans and mes-
sage-driven POJOs.

7.1 Understanding EJBs
EJB 3.0 defines a model for transactional components and objects. The term transactional
implies that the component is used to perform a cohesive set of operations that should
all be part of the same logical unit of work. The term server-side implies that the compo-
nent isn’t used for user presentation, but for back-end business logic or persistence.

 The EJB3 specification defines three types of enterprise bean objects: session
beans, entity objects, and message-driven beans. Session beans are typically used to
write business code encapsulated in a larger business transaction that may make calls
to other transactional components. For example, a session bean might be used to
make a reservation through a hotel reservation site. The code in the bean may check
for room availability, reserve the room, and then send an asynchronous message to a
third-party clearinghouse used by other reservation systems to notify them that the
room has been reserved. All this might be encapsulated in a single transaction.

 Entities are objects that represent domain objects mapped to the database. Entity
persistence is either encapsulated by a database transaction or part of a larger business
transaction. Message-driven beans are asynchronous message consumers managed
by a container.

163Understanding EJBs
NOTE Unfortunately, the EJB3 specification is unclear about what to call the
equivalent of what used to be Entity Beans in the previous EJB specifica-
tions. The specification refers to them as entity beans, persistent entities,
entities, and entity objects (all lowercase common nouns). For example,
section 2.4 of the EJB Core specification defines three types of enterprise
bean objects and then refers to them specifically as entity objects. Articles,
tutorials, and implementation documentation about EJB3 also use differ-
ing names. For example, the Hibernate documentation freely calls them
entity beans. Because of this naming ambiguity, we stick with the common-
noun form entity to refer to EJB3 objects used for persistence, although
the term entity bean is also acceptable.

Figure 7.1 shows you how the various Java EE components might communicate in an
enterprise application.

 Servlets, JSPs, session EJBs, entities, and the entity manager are all defined in the
Java EE specification. Either a rich internet application written using technologies
such as Flash or DHTML/AJAX or a web service client might access session beans
directly to perform business operations. Traditional web applications might go
through servlets and JSPs to execute business logic. Entities can be passed around
from server to client and back, but can only be persisted by an entity manager, which is
only accessible from the server. The entity manager is typically accessed through a ses-
sion or message-driven bean.

 In this section, we give you background on session beans and entities. We don’t give
you a comprehensive background or primer on all the aspects of these technologies

Figure 7.1 Session beans are
typically used for writing server-side
business logic, and entities are
used for persistence.

164 CHAPTER 7 Configuring enterprise applications
because there’s quite a bit to talk about. Our focus is on those aspects of the technologies
that you may want to configure in the server.

7.1.1 Understanding session beans

Session beans are used to encapsulate business logic. The two types of session beans
are stateful and stateless. As the names imply, stateful session beans (SFSBs) maintain
client state across multiple requests, whereas stateless session beans (SLSBs) maintain
no state across client requests.

 Session beans are pre-created when the server starts and then maintained in a
pool. Because SLSBs don’t maintain state for individual clients, each request can grab
a pre-created session bean from a pool and return it to the pool after the request is
complete. Unlike SLSBs, SFSBs aren’t reused between requests. SFSBs maintain a ses-
sion identifier with the client that consecutive requests will use to retrieve the same
bean out of the pool.

 In some applications, clients keep their connections open for quite a while. If
many clients are using an application, keeping connections open can lead to a large
number of SFSBs staying resident in memory. To alleviate the memory footprint, the
Java EE specification defines a model of passivation and activation where SFSBs are
persisted to secondary storage when they’re idle for a specified length of time and
retrieved when accessed again.

 Session beans define a business interface, a Java interface used to access the bean.
Remote clients use a bean’s business interface to make calls to the bean. The business
interface for a session bean can be defined as a local interface or a remote interface. A
local interface can be accessed by an EJB client located inside the application server.
Examples of local clients include web applications or other EJBs running in the same
application server instance. A remote interface can be accessed by remote clients that
run in different processes on the machine or on a different machine that accesses the
JBoss server instance over a network. Examples of remote clients include code run-
ning in other web servers or GUI clients.

 It makes sense for a local client to
make a call to an EJB’s interface the EJB
is running in the same JVM, but you
might wonder how a remote client can
do the same thing. JBoss makes remoting,
the act of making remote calls, easy by
allowing clients to download an object,
called a dynamic proxy, that implements
the EJB’s business interface. The dy-
namic proxy doesn’t implement the
business logic for the EJB, but does
know how to make a call to the server to
have the EJB execute the business logic.
Figure 7.2 illustrates this process.

Figure 7.2 A client obtains a dynamic proxy
from the server; then, it can use the proxy to
make calls to an EJB.

165Understanding EJBs
When the EJB is deployed to the server B, a dynamic proxy is generated and bound
into the JNDI server C. In section 7.4.1, you’ll learn about the default binding strategy
and how to change it. When the client wants to make calls to an EJB, it obtains the
dynamic proxy by doing a lookup in the JNDI server D. The dynamic proxy shares the
same business interface as the session bean, so the client pretends it’s making a call to
the bean E. The dynamic proxy takes the call and forms it into a message that can be
passed over a network into the EJB server, using whatever protocol it’s configured to
support. When the EJB server receives the message, it calls the session bean, which
executes the business logic and returns a response back to the dynamic proxy and, in
turn, back to the client.

 Now that you’ve seen how session beans work, let’s see how entity persistence
works by discussing Hibernate and JPA.

7.1.2 Understanding Hibernate and JPA

Entities are used to map objects in a domain model to a persistence store (generally, a
relational database). Hibernate is perhaps the most popular ORM tool in the Java com-
munity. Hibernate became quite popular in the early 2000’s because it’s transparent,
flexible, and powerful. In 2003, JBoss hired Gavin King, the lead developer for Hiber-
nate, and several other Hibernate developers, making Hibernate a JBoss project.
Gavin King then went on to join the specification team for the EJB3 specification,
bringing many of the ideas from Hibernate into the EJB3 specification.

 The EJB3 specification defines an ORM standard called the Java Persistence API
(JPA). As you may have guessed, Hibernate now implements the JPA specification. If
you want to use EJB3, you can use Hibernate as your persistence framework. If you
were apprehensive to use previous versions of EJB because of the persistence mecha-
nism, you can now feel comfortable using EJB3 entities with Hibernate. JPA is
designed to be used both inside and outside of the container to give you the free-
dom to use it in the same way that you might currently use Hibernate or any other
ORM framework.

 In previous versions of EJB, entity beans were server-side components managed by
the container and able to be invoked remotely by client applications. With JPA, entities
are now POJOs that can be passed around between application components and back
and forth between the client and server. Because they can be passed around, there’s
no need to make them remotely accessible.

 But, you ask, “I thought the database was on the server side; how are entities per-
sisted if the client doesn’t know about the database?” In JPA, a persistence context man-
ages entities and their lifecycles. In a Java EE application server, the persistence
context is managed by the container. Developers can access the persistence context
through an entity manager. The entity manager isn’t remotely accessible to clients.
Therefore, the entity object must be associated with the entity manager (on the
server) before the entity manager can persist it to the database.

 If you’re used to using Hibernate as a standalone ORM solution, you don’t have to
use JPA. In chapter 3, you learned how to deploy Hibernate archives to JBoss AS. In

166 CHAPTER 7 Configuring enterprise applications
section 7.5, we talk about how to configure JPA and how you can use and access Hiber-
nate mappings and objects through JPA.

7.1.3 Understanding enterprise packaging

In EJB3, EJBs are packaged using a regular JAR structure. JARs that contain EJBs are
often called EJB-JARs. But, in enterprise application development, applications are
often composed of more than EJBs. In Java parlance, an enterprise application is one
comprised of EJBs, POJOs, and one or more presentation or integration technologies.

 If your application is composed of multiple archives, you can use an Enterprise
Archive (EAR) to combine all of them. You can think of an EAR as an archive of
archives. An EAR can contain WARs, EJB-JARs, and/or regular JARs. By using an EAR,
you can deal with a single archive after your application has been built.

 Figure 7.3 shows you the structure for an EAR package (as an exploded directory).
 This enterprise archive is called SomeEnterpriseArchive. It contains a WAR called

SomeWebArchive.war and an EJB-JAR called SomeEjbJarArchive.jar. As you see in the
figure, these packages are at the top level of the contain-
ing archive. A META-INF directory is also at the top level.
As with any other archives, the META-INF directory con-
tains deployment descriptors. In the case of EARs, two
deployment descriptors are used: application.xml (stan-
dard) and jboss-app.xml (proprietary).

 Listing 7.1 shows you the application.xml file that
would be used for the EAR in figure 7.3.

<application>
 <display-name>Some Enterprise Archive</display-name>
 <module>
 <web>
 <web-uri>SomeEnterpriseArchive.war</web-uri>
 <context-root>/myapp</context-root>
 </web>
 </module>
 <module>
 <ejb>SomeEnterpriseArchive.jar</ejb>
 </module>
</application>

The application.xml file is responsible for defining the archives that are part of the
EAR and providing any additional information about them. For example, you can
specify the context-root for the SomeEnterpriseArchive.war web application as
shown in the example. If you deploy an EAR and specify the context root at this level,
it will override any context definitions in the WAR file itself.

 The jboss-app.xml file is used for several things. The main use is to configure
class loading for the entire enterprise application using the loader-repository
configuration as discussed in chapter 3. It’s also used to deploy modules that are

Listing 7.1 Example of application.xml file for an EAR

Figure 7.3 EARs are
composed of other packages
such as WARs and EJB-JARs.

167Creating an EJB application
JBoss-specific. The application.xml file can be used to deploy standard archive types,
but it doesn’t know how to deploy JBoss archives such as HARs and data sources as
we discussed in chapter 3.

 In this section, we gave you background on how session and entity EJBs work. We also
showed you the structure for EJB and enterprise packages. Now let’s put the knowledge
to use by creating an EJB application. You can deploy the code we create in this section
to the application server in order to test many of the configurations we talk about
throughout the rest of the chapter. If you’re not a programmer, you might want to find
somebody to help you get through the next section or obtain the code that accompanies
the book because it automates building and deploying the application for you.

7.2 Creating an EJB application
To get a better idea of how an EJB application works, let’s create one. Again, because
the focus of this book is on configuring JBoss, and not on application development,
we stick with a simple Hello World! example. This will give us something that we can
deploy into the container to test various aspects of JBoss configuration.

 The Hello World! application will consist of a standalone client, a session bean,
and an entity. The client will send strings containing greeting messages into the ses-
sion bean. The session bean, called GreeterBean, implements the Greeter interface.
On receiving a greeting, the session bean will create a Greeting entity and persist it
into the database using the entity manager injected into the session bean. The client
can then ask the session bean for a list of all the greetings that it has sent to the bean,
at which time the session bean uses the entity manager to query the database and
returns a list of Greeting objects to the client.

 Figure 7.4 shows you the sequence of calls between components in our sample
application.

Figure 7.4 The communication between
the components of the sample application

168 CHAPTER 7 Configuring enterprise applications
In case you’re not familiar with how to read this diagram, order of calls is 1, 2, 2.1, 2.2,
and so on. Now let’s take a look at how to write the necessary code.

7.2.1 Coding the example application

To create the sample application, start by writing the GreeterBean session bean, which
is the heart of the business logic in the application. Listing 7.2 shows you the code for
the session bean’s remote interface (Greeter).

package com.manning.jbia;
import java.util.List;
import javax.ejb.Remote;
@Remote
public interface Greeter {
 public void greet(String message);
 public List<Greeting> getAllGreetings();
}

The interface is annotated with the @Remote annotation, which tells the container that
this is a remote interface. The interface defines two methods, one that allows a remote
client to send greetings into the session bean and another that allows the client to
retrieve all the greetings that have been sent previously. Listing 7.3 shows you the
GreeterBean code that implements this remote interface.

package com.manning.jbia;
import java.util.List;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
@Stateless
public class GreeterBean implements Greeter {
 @PersistenceContext
 private EntityManager em;
 public void greet(String message) {
 Greeting greeting = new Greeting(message);
 em.persist(greeting);
 }
 public List<Greeting> getAllGreetings() {
 return em.createQuery("from Greeting").getResultList();
 }
}

The GreeterBean class is annotated with the @Stateless interface, which tells the
container that it’s an SLSB. The bean implements the remote interface and provides
code for the two methods defined on the interface. The EntityManager class variable
is annotated with the @PersistenceContext annotation, which tells the container to
inject an entity manager associated with the current peristance unit. Persistence units
ares defined in the META-INF/persistence.xml file, which is shown in listing 7.4.

Listing 7.2 Session bean’s remote interface

Listing 7.3 Session bean code

169Creating an EJB application
<persistence>
 <persistence-unit name="greeter">
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 <property name="hibernate.hbm2ddl.auto"
 value="create-drop"/>
 </properties>
 </persistence-unit>
</persistence>

This file specifies that you’re using the application server’s default data source by
pointing to the java:/DefaultDS JNDI name in the jta-data-source element. You
also enable a setting called hibernate.hbm2ddl.auto, which dynamically re-creates
the database tables every time the application is brought up. This setting obviously
isn’t one that you want to enable in production, but it’s useful when you’re first devel-
oping or prototyping a new system.

 The methods on the session bean utilize the entity manager to read and write
Greeting objects to the database. Listing 7.5 shows you the code for the entity.

package com.manning.jbia;
import java.io.Serializable;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
@Entity
public class Greeting implements Serializable {
 private int id;
 private String message;
 public Greeting() { }
 public Greeting(String message) { this.message= message; }
 @Id @GeneratedValue
 public int getId() { return id; }
 public String getGreeting() { return message; }
 private void setId(int id) { this.id = id; }
 private void setGreeting(String message) { this.message = message; }
}

The entity class is annotated with the @Entity annotation, which tells the container that
this is an entity. There are two class-level variables: id and message. The entity manager
uses the id variable to associate the instance of the object in memory to a particular pri-
mary key in the database. The getId() method is annotated with the @Id and @Gener-
atedValue annotations to tell the entity manager that the associated field is the one that
should be bound to the primary key and that the value for the primary key should be
auto-generated. JPA requires a setter for each persistent attribute, but because clients
don’t need to change the id and message attributes, they can be left as private.

 The message attribute stores the data that the client sends to the session bean.
Because the get method is called getGreeting(), the field will automatically be

Listing 7.4 META-INF/persistence.xml file containing definition for entity manager

Listing 7.5 Greeting class defining an entity for sample application

170 CHAPTER 7 Configuring enterprise applications
associated with a column in the database called greeting. The same convention
applies to the id field as well. The entity class implements the Serializable inter-
face because you’re going to pass the Greeting objects over the wire to the client.

 Listing 7.6 shows you the client code that accesses the sample application.

package com.manning.jbia;
import java.util.Hashtable;
import java.util.List;
import javax.naming.Context;
import javax.naming.InitialContext;
public class Client {
 public static void main(String[] args) throws Exception {
 InitialContext ctx = new InitialContext();
 Greeter greeter = (Greeter)
 ctx.lookup("GreeterBean/remote");

 greeter.greet("Hello, world!"); //English
 greeter.greet("Hola, mundo!"); //Spanish
 greeter.greet("Salam, donya!"); //Persian
 greeter.greet("Bonjour, monde!"); //French
 greeter.greet("Ciao, mondo!"); //Italian

 List<Greeting> greets = greeter.getAllGreetings();
 for (Greeting greeting : greets) {
 System.out.println(greeting.getGreeting());
 }
 }
}

The client code first loads the dynamic proxy for the GreeterBean from JNDI B by pass-
ing in the name of the bean appended with a slash and the word remote (GreeterBean/
remote). This combination is the default name that the bean gets bound to when it’s
deployed into the server. After loading the dynamic proxy, the client uses the Greeter
interface to interact with the proxy. The client calls the greet() method C, passing in
several “Hello, World!” greetings in different languages. Then, the client calls the
getAllGreetings() method D to load a list of all the Greeting objects, iterates over the
list, and prints out each greeting.

 To run this client code, you need to specify your JNDI properties in a file called
jndi.properties located at the root of your class path. The contents of that file will look
like the following:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=localhost:1099

The java.naming.provider.url property points to the hostname and port of the
JNDI server.

 And that’s it. Considering the amount of code and configuration you’d have to
write to produce an equivalent sample application with JDBC or even with Hibernate,
EJB3 is a blessing! Now let’s see how we can package our code and deploy it into the
application server.

Listing 7.6 Client code that calls sample application

B

C

D

171Creating an EJB application
7.2.2 Packaging and running the example application

When you write an EJB and want to deploy it, you have to compile and package it. To
compile the code, you need several JAR files on your build class path. With modern
IDEs and build tools, it’s easy to include entire directories of JAR files in your class
path, so the easiest way is to add all the JAR files in the following paths under the JBoss
installation:

 lib
 server/xxx/lib
 server/xxx/deployers/ejb3.deployer
 server/xxx/deployers/jboss-aop-jboss5.deployer

As we discussed in section 7.1.3, EJBs are deployed in JARs that are often called EJB-JAR
archives. Packaging the EJB is almost trivial because all you have to do is create a JAR.
Your compiled source code, including any directories under which your source may
exist, goes directly into the top level of the JAR file. You also need to put the persis-
tence.xml file in the META-INF directory directly under the
root folder.

 Figure 7.5 shows the structure of the EJB-JAR file that you
need to create.

 The META-INF directory doesn’t need a jboss.xml or ejb-
jar.xml file for this sample application.

 After you create the archive, copy it in to the deploy
directory of the application server. You should see a bunch
of output in the console window that ends with the follow-
ing lines:

INFO [MCKernelAbstraction] installing bean:
jboss.j2ee:jar=greeter.jar,name=GreeterBean,service=EJB3 with
dependencies:

INFO [MCKernelAbstraction]
persistence.units:jar=greeter.jar,unitName=greeter

INFO [EJBContainer] STARTED EJB: com.manning.jbia.GreeterBean ejbName:
GreeterBean

Now, build and run the client application using a runtime class path that contains the
same directories as the build class path, as well as the directory containing your client
code and jndi.properties file. The jndi.properties file should be in the root of your
class path. You should see the following output:

Hello, world!
Hola, mundo!
Salam, donya!
Bonjour, monde!
Ciao, mondo!

This example has given you an overview of how to create a simple EJB application.
Now, let’s take a more in-depth look at EJB configuration.

Figure 7.5 The structure
of an EJB-JAR file

172 CHAPTER 7 Configuring enterprise applications
7.3 Understanding EJB configuration
As we’ve discussed throughout the book, running in an application server allows you
to focus on developing components that contain business logic, while plugging into
services that are already available. After you understand how to develop EJBs and
deploy them into the application server, you’ll want to know how to configure EJB
applications and the services that they use. To gain a better understanding of how to
do this, we need to explore the various application and server configuration points.

 As with web configuration, there are two types of configuration: configuration of
individual web applications and configuration of the JBoss EJB container. Application
configuration pertains to individual EJBs and EJB archives. Examples of application
configuration include defining security, defining JNDI names, enabling clustering,
and defining which transport protocol a particular bean supports. Server configura-
tion relates to behavior that applies to all applications running in the server, such as
protocol settings, the default database used by entities, and class loading.

 In this section, you’ll learn to locate and explore the various configuration files
used in the JBoss EJB container and in EJB applications. The remaining sections of this
chapter will build on top of this fundamental understanding of the configuration files
to teach you how to make your applications use the features available to applications
running in the JBoss EJB container.

7.3.1 Where does everything go?

Before diving into an explanation of what the various con-
figuration files do, you need to understand where the JBoss
EJB container configuration files reside and where EJB appli-
cations get deployed. Figure 7.6 shows you the JBoss direc-
tory structure, highlighting the directories that are used to
configure and deploy EJB applications and configure the
EJB server.

 The conf directory contains a configuration file called
standardjboss.xml. This is a global version of the proprietary
deployment descriptor called jboss.xml, which we talk about in the next section. The
contents of the standardjboss.xml file apply to all EJB applications deployed to the
server. This file is predominately used to configure the various EJB containers for the
different EJB types and the corresponding dynamic proxies that are used to access
them. We visit this file several times throughout this chapter.

 The deploy directory is where you deploy EJB applications. Several configuration
files for various EJB services are also in the deploy directory. We discuss some of these
in section 7.3.3.

 The JBoss EJB server comes prepackaged in both the default and the all configura-
tions. The EJB deployer is packaged under the deployers/ejb3.deployer directory. The
ejb3.deployer/META-INF directory contains configuration files used to configure the
EJB3 deployer.

Figure 7.6 The directories
used for EJB configuration
and deployment

173Understanding EJB configuration
 Now that we know where applications can be deployed and where the server con-
figuration files go, let’s take a closer look at application configuration.

7.3.2 Configuring EJB applications

With EJB3, you can configure applications almost entirely using annotations and
default conventions. You can specify configuration parameters that you want or have
to configure by using annotations, and the container assumes default values for most
everything that you don’t explicitly specify—minimizing or, in many cases, eliminating
the need for XML deployment descriptors. You can still use XML deployment descrip-
tors in place of annotations, but the intention with EJB3 is to use deployment descrip-
tors to override default configuration or configuration specified in annotations. This
model is often called convention over configuration.

 One great thing about EJB3 is that you don’t have to specify an entire XML config-
uration file to override a single configuration option; you can specify only the portion
of the deployment descriptor that you wish to override. In this case, the deployment
descriptor is called a partial deployment descriptor.

 When we talked about web applications in chapter 5, we discussed the differences
between standard and proprietary deployment descriptors. EJB applications also have
standard and proprietary deployment descriptors. Let’s take a look at the deployment
descriptors that EJB applications can use.

 One standard deployment descriptor in an EJB application is the META-INF/ejb-
jar.xml file. In EJB3, this file is largely optional because of annotations. Another stan-
dard deployment descriptor that can be defined is the META-INF/persistence.xml.
This file is used to configure what are known as JPA persistence units, which we’ll dis-
cuss shortly. As usual, JBoss AS provides default behavior for most configurable compo-
nents and services, keeping JBoss AS-specific configuration to a minimum. When EJB
application configuration is necessary, JBoss AS provides a proprietary deployment
descriptor called jboss.xml.

 Throughout this chapter, and in the accompanying source code for the book, we
show you how to configure EJBs using annotations, but we also show you how to use
the XML configuration files when it makes sense.

 Figure 7.7 shows you that all the deployment descriptors (standard and proprie-
tary) must reside in the EJB application’s META-INF directory.

 Let’s take a closer look at each of these deployment
descriptors, starting with the ejb-jar.xml file. Because ejb-
jar.xml and persistence.xml are standard deployment
descriptors, they’re covered in depth in the EJB3 specifica-
tion and in many online documents and tutorials on EJB3, so
we only give you an overview of those files here.
THE EJB-JAR.XML FILE

The ejb-jar.xml file is the standard deployment descriptor
used to configure session and message-driven beans. As we

Figure 7.7 All the
deployment descriptors go
in the META-INF directory
of an EJB-JAR archive.

174 CHAPTER 7 Configuring enterprise applications
mentioned in section 7.1.2, entities aren’t managed directly by the container, they’re
managed by the JPA persistence context. For that reason, entities aren’t configured in
this file (as opposed to previous versions of EJB). Listing 7.7 shows you the outline for
the ejb-jar.xml file.

<ejb-jar>
 <description>Some JBoss Application</description>
 <display-name>Some App</display-name>
 <enterprise-beans>
 <session> ... </session>
 <message-driven> ... </message-driven>
 </enterprise-beans>
 <assembly-descriptor>
 <security-role> ... </security-role>
 <method-permission> ... </method-permission>
 <container-transaction> ... </container-transaction>
 <exclude-list> ... </exclude-list>
 </assembly-descriptor>
</ejb-jar>

The root element is ejb-jar B; under that is a description and a display-name ele-
ment C. These elements are descriptive metadata fields used for logging. The main
element blocks in this file are the enterprise-beans block D and the assembly-
descriptor E block. The enterprise-beans block D defines session and message-
driven beans. To define a session bean, you define a session element; to define a mes-
sage-driven bean, you define a message-driven element. These bean definitions can
be used to define a bean’s class, its interfaces, any other EJBs it references, which inter-
ceptors it uses, and whether the bean uses container transactions.

 The assembly-descriptor block E provides the definition for how security roles
are applied to the bean method, the definition of method permissions, the definition
of transaction attributes for EJBs using container-managed transactions, interceptor
bindings, a list of methods to be excluded from being invoked, and a list of exception
types that should be treated as application exceptions.

 Now let’s look at the persistence.xml file, which is used to configure entity
persistence.
THE PERSISTENCE.XML FILE

The persistence.xml file is the standard deployment descriptor used to configure a JPA
persistence context. You saw an example of this file when we showed you how to code
the sample application in section 7.2.1. JBoss has built-in support for Hibernate as its
JPA implementation, so most applications have a persistence.xml file that looks similar
to that shown in listing 7.8.

<persistence>
 <persistence-unit name="userDatabase">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>

Listing 7.7 Outline of a META-INF/ejb-jar.xml file

Listing 7.8 The persistence.xml file used to configure JPA entity persistence

B
C

D

E

175Understanding EJB configuration
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 <property name="hibernate.dialect"
 value="org.hibernate.dialect.HSQLDialect"/>
 </properties>
 </persistence-unit>
</persistence>

The persistence-unit block defines a persistence context. This configuration
defines Hibernate as the JPA provider and points to java:/DefaultDS, the JNDI name
for the default data source in JBoss AS. The block also defines any properties that you
might want to provide to Hibernate. We talk about the persistence.xml file more when
we discuss entity persistence in section 7.5.

 Last but not least, let’s take a closer look at the proprietary jboss.xml deployment
descriptor.
THE JBOSS.XML FILE

The jboss.xml file is the proprietary deployment descriptor used to configure EJBs.
The structure of the file is similar to the ejb-jar.xml. This similarity exists because the
standard ejb-jar.xml deployment descriptor describes what behavior you’re configur-
ing, and the proprietary jboss.xml deployment descriptor describes how you’re config-
uring the behavior defined in the standard deployment descriptor. Listing 7.9 shows
you an example of a jboss.xml file.

<jboss xmlns="http://www.jboss.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee
 http://www.jboss.org/j2ee/schema/jboss_5_0.xsd"
 version="3.0">
 <security-domain>jbia-domain</security-domain>
 <enterprise-beans>
 <session>
 <ejb-name>ShoppingCart</ejb-name>
 <jndi-name>ShoppingCart</jndi-name>
 <clustered>true</clustered>
 <cluster-config>
 <partition-name>DefaultPartition</partition-name>
 <load-balance-policy>
 org.jboss.ha.framework.interfaces.RandomRobin
 </load-balance-policy>
 </cluster-config>
 <security-domain>overridden-domain</security-domain>
 </session>
 <session>
 <ejb-name>StatelessTest</ejb-name>
 <jndi-name>StatelessTest</jndi-name>
 </session>
 </enterprise-beans>
</jboss>

Listing 7.9 The jboss.xml file used to specify JBoss AS–specific configuration for EJBs

176 CHAPTER 7 Configuring enterprise applications
You can use the jboss.xml file to configure behavior that’s particular to the application
server, such as

■ Global JNDI bindings (see section 7.4.1)
■ Configuring dynamic proxies (see section 7.4.3)
■ Configuring the different EJB containers (see section 7.4.3)
■ Defining JBoss service objects (see section 7.6)
■ Configuring the transport protocol (see section 7.7)
■ Securing EJBs (see section 7.8)

We refer back to the jboss.xml file or the equivalent annotations throughout this
chapter.

 In this section, you learned how to configure EJB applications. Now let’s talk about
how to configure the EJB server.

7.3.3 Configuring the EJB server

Server configuration is done in either the EJB server’s configuration files or in the
configuration files for the various services that run on top of the EJB server. These ser-
vice configuration files are deployed as services in the server configuration’s deploy
directory. Table 7.1 summarizes the different files that can be configured, what config-
uration they’re available in, and what they’re used for.

Table 7.1 Summary of the EJB server and various EJB service configuration files

Filea Configuration What it configures

deploy/cluster/jboss-cache-manager.sar/
META-INF/jboss-cache-configs.xml

all The JBoss Cache configuration that
defines the caches for SFSB, entities,
queries, timestamps

deploy/ejb3-connectors-jboss-beans.xml default, all The EJB connector used for remoting

deploy/ejb3-interceptors-aop.xml default, all All the interceptors used during EJB calls
and lifecycle events, both on the client
and the server side

deploy/ejb3-timer-service.xml default, all JBoss’s implementation of the EJB Timer,
a service specified by the Java EE specifi-
cation that allows for EJB calls that occur
based on timer events

deployers/ejb3.deployer/META-INF/
persistence.properties

default, all Default properties used when creating a
persistence unit (as defined in an applica-
tion’s persistence.xml file)

deployers/ejb3.deployer/META-INF/
jpa-deployers-jboss-beans.xml

default, all The deployer used to recognize and
deploy JPA archives

deployers/ejb3.deployer/META-INF/
ejb3-deployers-jboss-beans.xml

default, all The deployer used to recognize and
deploy EJB archives

a. All directories are relative to the server configuration directory.

177Configuring session beans
These are all standard configuration file types that we cover in this book (-service.xml,
jboss-beans.xml, -aop.xml) or are standard to Java (.properties), so we don’t go into a
discussion of the file structures. We refer back to these files throughout this chapter
and in chapter 13 when we discuss EJB clustering.

 By this point, you should have a good understanding of the configuration files
used for EJB application and server configuration. The rest of this chapter will
build on top of this knowledge by showing you how to configure specific behavior
using the configuration files. Let’s start by talking about how you can configure ses-
sion beans.

7.4 Configuring session beans
When session EJBs get deployed to the server, they’re automatically bound into JNDI
using a default name. Changing this default binding is a common configuration. In
this section, we explore how to change the JNDI binding for a bean and how to look
up a bean.

 We also describe how to configure the EJB container and the dynamic proxy that
the client uses to call the server. These configurations will allow you to enable SFSB
passivation and configure the pool size for SLSBs.

 Let’s first discuss how to change the JNDI binding for a session bean.

7.4.1 Changing the JNDI binding

JNDI provides a uniform way for both local and remote application components to
look up references to dynamic proxies for the EJB that they need to call. As EJBs are
deployed into the server, the server automatically creates the dynamic proxy for the
EJB and binds it into the JNDI server. You’ll need to know how to change the JNDI
name for an EJB and how to look up the JNDI name from a client.

 By default, when you deploy a session bean into JBoss, the JNDI name that the bean
gets bound to is the name of the bean itself. For example, let’s say that you deploy the
SLSB, remote business interface, and local business interface shown in listing 7.10 to
JBoss AS.

//A stateless session bean
@Stateless
public class MessagePrinterBean implements MessagePrinterRemote,

MessagePrinterLocal {
 public void printRemoteMessage(String message) { ... }
 public void printLocalMessage(String message) { ... }
}

//A local interface
@Local
public interface MessagePrinterLocal {
 public void printLocalMessage(String message);
}

Listing 7.10 An SLSB and its local and remote interfaces

178 CHAPTER 7 Configuring enterprise applications
//A remote interface
@Remote
public interface MessagePrinterRemote {
 public void printRemoteMessage(String message);
}

When the EJB deploys to the application server, it gets bound under the name Mes-
sagePrinterBean, which the clients will use to look up the bean. If you want, you can
change the JNDI binding for the bean to TextMessagePrinter instead of Message-
PrinterBean through either an annotation or configuration. Let’s look at how to do
both, starting with the annotation approach.
CHANGING THE JNDI BINDING THROUGH ANNOTATIONS

The JNDI name for a session bean can be changed by applying one of the following
annotations on the session bean class:

@org.jboss.ejb3.annotation.RemoteBinding
@org.jboss.ejb3.annotation.LocalBinding

As the names suggest, to change the remote JNDI binding, you use the @RemoteBinding
annotation, and to change the local JNDI binding, you use the @LocalBinding annota-
tion. For example, if you want to change the local and remote JNDI bindings for the
message printer example listing 7.10, you could add the following annotations to the
SLSB class.

@Stateless
@LocalBinding(jndiBinding="LocalTextMessagePrinter")
@RemoteBinding(jndiBinding="TextMessagePrinter")
public class MessagePrinterBean ...

If you want to bind the dynamic proxy for the session bean to multiple remote names,
you can, as follows:

@RemoteBindings({ @RemoteBinding(jndiBinding="TextMessagePrinter"),
 @RemoteBinding(jndiBinding="AnotherName") })

Here we use the @org.jboss.ejb3.remoting.RemoteBindings annotation (note the s
at the end) to contain multiple @RemoteBinding annotations.

 Now, let’s see how to change the default JNDI binding for a session EJB through
configuration.
CHANGING THE JNDI BINDING THROUGH CONFIGURATION

You can also change the JNDI binding for a session bean’s dynamic proxy via the
META-INF/jboss.xml file. Listing 7.11 shows a partial deployment descriptor that
changes the default JNDI binding or overrides the ones defined by annotations.

<jboss xmlns="http://www.jboss.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee
 http://www.jboss.org/j2ee/schema/jboss_5_0.xsd"

Listing 7.11 Partial deployment descriptor that changes default JNDI binding for an EJB

179Configuring session beans
 version="3.0">
 <enterprise-beans>
 <session>
 <ejb-name>MessagePrinterBean</ejb-name>
 <jndi-name>TextMessagePrinter</jndi-name>
 <local-jndi-name>LocalTextMessagePrinter</local-jndi-name>
 </session>
 </enterprise-beans>
</jboss>

The ejb-name element defines which session bean you want to change the bindings
for. The jndi-name element modifies the binding for the dynamic proxy used for
remote access. The local-jndi-name element modifies the binding for the dynamic
proxy used for local access.

 You’ve seen how to change the binding for an EJB; now let’s discuss how to look up
a session bean from a client.

7.4.2 Looking up a session bean

In order to call an EJB, you have to look up a dynamic proxy from a JNDI server and
make a call to the proxy. As we discussed in the last section, a bean is automatically
bound into JNDI by its name. If you deploy a bean called TexanGreeter that imple-
ments the Greeter remote interface, you access it in the following way:

Greeter myGreeter = (Greeter) ctx.lookup("TexanGreeter/remote");

Notice that you have to append the word remote after the name. If you want to look up
a local interface for the same bean, you write the following:

GreeterLocal myGreeter =

➥ (GreeterLocal) ctx.lookup("TexanGreeter/local");

This time you use local after the bean name instead of remote.
 If you deploy an EJB-JAR bundled in an EAR file, you need to preface the JNDI

name with the name of your EAR file.

ctx.lookup("earfilename/BeanName/remote");

Now that you know how to change the JNDI binding for EJBs and look them up in
JNDI, let’s examine another aspect of session bean configuration—configuring the EJB
containers.

7.4.3 Configuring EJB containers

In JBoss AS, there’s a container definition for each type of remotely accessible EJB. It’s
useful to know how to configure containers and the dynamic proxies configured to
call the containers so that you can control features such as session-bean pool size and
SFSB passivation. In this section, we take a high-level look at how to configure the vari-
ous EJB containers to help you with more specific configurations throughout the rest
of this chapter.

180 CHAPTER 7 Configuring enterprise applications
NOTE In EJB3, an entity manager (the interface used to read/write entity
objects to a database) can’t be accessed remotely and isn’t managed by a
server container. The entity manager accesses entity objects from within
a persistent context, which is an in-memory cache of entity objects syn-
chronized to the database. A persistence context is configured in an
application’s META-INF/persistence.xml file. Because entities aren’t man-
aged by a server container, as we explore the container configuration,
you won’t see anything relating to EJB3 entities.

Both the dynamic proxy and the container for each type of EJB are defined in the
server/xxx/conf/standardjboss.xml file. This file defines two main blocks: one that
defines the dynamic proxies and one that defines the containers. Listing 7.12 shows
you the general structure of the file.

<jboss>
 <invoker-proxy-bindings>
 <invoker-proxy-binding>...</invoker-proxy-binding>
 <invoker-proxy-binding>...</invoker-proxy-binding>
 </invoker-proxy-bindings>
 <container-configurations>
 <container-configuration>...</container-configuration>
 <container-configuration>...</container-configuration>
 </container-configurations>
</jboss>

Each invoker-proxy-binding block defines a dynamic proxy and how it’s associated
with an invoker, a component used to configure a transport protocol. We talk about
configuring the transport protocol in section 7.7. The container-configuration
blocks configure the server container. Listing 7.13 shows you the SFSB configuration
as an example.

<container-configuration>
 <container-name>Standard Stateful SessionBean</container-name>
 ...
 <container-interceptors>...</container-interceptors>
 ...
 <persistence-manager>
 org.jboss.ejb.plugins.StatefulSessionFilePersistenceManager
 </persistence-manager>
 <container-cache-conf>...</container-cache-conf>
 <container-pool-conf>
 <MaximumSize>100</MaximumSize>
 </container-pool-conf>
</container-configuration>

You know that this listing is the configuration for the SFSB container because of the
container-name element B. The SLSB container has a container-name value of
Standard Stateless SessionBean, so it’s also easy to find.

Listing 7.12 General structure of standardjboss.xml

Listing 7.13 Container configuration for SFSB in standardjboss.xml

B

C

D

E

F

181Configuring session beans
 The container configuration is primarily composed of the interceptors defined in
the container-interceptors block C. The container passes incoming requests
through a chain of interceptors before it reaches the EJB. Each interceptor handles
different non-business concerns of the request, such as checking for security and ini-
tializing transaction management. Although you can create custom interceptors and
change the order of the existing ones, we’ve found little use for this in practice. If you
do need to extend or change the interceptors, the JBoss AS Configuration Guide (ref-
erenced at the end of this chapter) explains how to do so.

 Some of the other elements in these configuration files are much more commonly
changed. Let’s take a look at some of these uses.
CONFIGURING THE SESSION-BEAN POOL SIZE

You can configure the SFSB and SLSB pool sizes by setting the values of the Minimum-
Size and MaximumSize elements under the container-pool-conf element F. The
MinimumSize setting tells the container how many instances to bring up when the con-
tainer first starts. The MaximumSize setting isn’t a strict maximum size; it tells the pool
the maximum number of instances to keep alive. If more requests come in than this
maximum, the server creates more. If you want to strictly limit the number of concur-
rent requests to a server, you use the strictMaximumSize and strictTimeout ele-
ments as follows:

<container-pool-conf>
 <MinimumSize>20</MinimumSize>
 <MaximumSize>100</MaximumSize>
 <strictMaximumSize>true</strictMaximumSize>
 <strictTimeout>10000</strictTimeout>
</container-pool-conf>

The strictMaximumSize Boolean attribute tells the container to never allow more
concurrent requests than the value defined in the MaxiumSize element (100, in this
case). Requests that come in after the maximum are blocked until they timeout based
on the number of milliseconds defined by the strictTimeout element, after which a
java.rmi.ServerException is thrown. If the value of the timeout is 0, then it immedi-
ately times out. The maximum (and default) value is the maximum possible Long
value which is 9,223,372,036,854,775,807 milliseconds or about 292,471,208 years.
CONFIGURING SFSB PASSIVATION

Stateful bean passivation is configured with two elements: the persistence-manager
block D and the container-cache-conf block. The persistence-manager defines
which persistence manager should be used for passivation. The container uses the
persistence manager to read and write passivated objects to secondary storage. The
default SFSB persistence manager is the StatefulSessionFilePersistenceManager,
which writes the session bean state to a file.

 The passivation rules are defined in the container-cache-conf configuration
block E. In this block, you define a cache policy and a configuration for that cache
policy as shown in the following code snippet:

182 CHAPTER 7 Configuring enterprise applications
<container-cache-conf>
 <cache-policy>
 org.jboss.ejb.plugins.LRUStatefulContextCachePolicy
 </cache-policy>
 <cache-policy-conf>
 <min-capacity>50</min-capacity>
 <max-capacity>1000000</max-capacity>
 ...
 </cache-policy-conf>
</container-cache-conf>

The default policy is a Least Recently Used (LRU) policy called LRUStatefulContext-
CachePolicy. If you want to disable passivation altogether, you replace the default
with org.jboss.ejb.plugins.NoPassivationCachePolicy. This policy never writes
to a secondary storage; it keeps all the sessions in memory.

 If you want to write to a database or use a distributed cache for your SFSB passiva-
tion, the best bet is to use the all configuration and use a cache loader. We talk about
this more when we discuss clustering in chapters 12 and 13.

 We’ve seen how to configure session beans and their containers; now let’s look at
how to configure entity persistence.

7.5 Configuring entity persistence
To use EJB3 entities, you have to configure a data source and define a META-INF/
persistence.xml file in your application package. We discussed data sources and how
to configure them in chapter 3 (section 3.4.1); now, let’s take a closer look at what’s in
the persistence.xml file and see what you can do with it.

 When you deploy an application archive with a META-INF/persistence.xml file, the
application server automatically scans the class files in the package to see if any enti-
ties are defined. It then creates a persistence context based on the configuration in
the persistence.xml file, making sure to include all the entity classes that it found.
Plenty of information is available on JPA configuration in the JPA specification, which
is referenced at the end of this chapter.

 In this section, you’ll learn how to configure JPA to use Hibernate objects and map-
pings in JBoss. Let’s start by seeing how a session bean might get a reference to a per-
sistence context so that it can start using it to persist objects.

7.5.1 Injecting Hibernate objects

In JPA, we use the EntityManager class to interact with the persistence context, and we
use the EntityManagerFactory class to create EntityManager instances. If you’ve
been using Hibernate, you may have code that uses the Hibernate Session and Ses-
sionFactory objects to interact with the persistence context. Because Hibernate is
JBoss’s JPA implementation, if you need to access these Hibernate objects, you can do
so. Not only can you access them, but JBoss even enables you to inject them directly
into your EJBs, as shown in listing 7.14.

183Configuring entity persistence
import org.hibernate.Session;
import org.hibernate.SessionFactory;

@Stateful public class SomeBean ... {
 @PersistenceContext(unitName="unitOne")
 Session session;

 @PersistenceUnit(unitName="unitTwo")
 SessionFactory factory;
}

In this code, the same @javax.persistence.PersistenceContext and @javax.
persistence.PersistenceUnit annotations used to inject EntityManager and
EntityManagerFactory objects (respectively) can also be used to inject the Session
and SessionFactory objects. The application server manages the lifecycle of the
HibernateSession object the same way that it manages the lifecycle of the Entity-
Manager object.

 If you already have a reference to an EntityManager instance, you can still obtain a
reference to HibernateSession as shown in listing 7.15.

import org.jboss.ejb3.entity.HibernateSession;
import org.hibernate.Session;

...

@PersistenceContext EntityManager entityManager;

public void someBusinessMethod()
{
 HibernateSession hs = (HibernateSession)entityManager;
 Session session = hs.getHibernateSession();
 ...
}

You can also deploy existing Hibernate mapping files into JBoss AS, giving you a faster
transition into EJB3 and JPA. Let’s see how this works.

7.5.2 Deploying Hibernate mappings

Many people fear switching to JPA because they’ve already invested so much in creat-
ing their Hibernate mapping files. In chapter 3 (section 3.4.2), we talked about how
to deploy a Hibernate archive in JBoss AS. If you don’t want to use JPA or already have
application code running in Hibernate, that option is great.

 But if you do want to use JPA, there’s one great advantage of having Hibernate as
the JPA implementation for JBoss AS—you can deploy Hibernate .hbm.xml mapping
files in an EJB archive, and the mapped classes can be accessed as JPA entities inside
your code. The best part is that you don’t have to configure anything; as long as the

Listing 7.14 Injecting Hibernate objects into EJBs

Listing 7.15 Casting JPA objects into Hibernate objects

184 CHAPTER 7 Configuring enterprise applications
.hbm.xml mapping files are in an archive that’s scanned for entities, the mapped
classes automatically become entities.

 Now that you’ve learned how to configure various aspects of entity persistence,
let’s take a look at how JBoss AS enables you to easily define new services using service
objects.

7.6 Creating JMX service objects
In chapter 2 (section 2.1.2), we talked about how JBoss AS services can plug into
JBoss’s management interface by defining a JMX MBean. Many applications need mon-
itoring or dynamic management capabilities; and, if you’re running in JBoss, JMX is an
easy way to get this functionality. In the past, writing your own service required config-
uration work, but with an extension of the new EJB3 container and through the use of
annotations, JBoss makes this process simple.

 JBoss AS now offers a new component type called a JMX service object. Service
objects are a special type of EJB that are similar to SFSB. Service objects can define
local and remote interfaces, be injected into and from other EJBs, and maintain state.
The main difference is that service objects are singletons; only a single instance of the
service object is available in the server (for all clients) as you’d expect of a service run-
ning in the server.

7.6.1 Creating a service object

Let’s look at an example of how you might use a service object. Let’s say that you want
to build an investment calculator that calculates the future value of an investment with
a given interest rate (or growth rate). You want to implement the calculator as an SLSB
where every client has its own calculator. Now let’s say that the interest rate for the cal-
culator is set on the server side by an administrator. You only want a single interest rate
for all the calculators, so you want to maintain this data in a singleton. Listing 7.16
shows you the calculator class.

@Stateless
public class StatelessCalculatorBean implements Calculator {
 @EJB(beanName = "InterestRateMBean")
 private InterestRateManager interstRateManager;
 public double calculateTotalInterest(double presentValue, int years) {
 return calculateFutureValue(presentValue, years) - presentValue;
 }
 public double calculateFutureValue(double presentValue, int years) {
 double interestRate = interstRateManager.getInterestRate() / 100;
 return presentValue * Math.pow((1.0 + interestRate), years);
 }
 public double getInterestRate() {
 return interstRateManager.getInterestRate();
 }
}

Listing 7.16 Code for SLSB calculator

185Creating JMX service objects
The remote interface that the bean uses looks like listing 7.17.

@Remote
public interface Calculator {
 public double getInterestRate();
 public double calculateTotalInterest(double presentValue, int years);
 public double calculateFutureValue(double presentValue, int years);
}

The calculator implements a remote interface with a few methods that make use of a
class-level variable called interestRateManager that’s an instance of the Interest-
RateManager interface. The field is injected into the SLSB using the @EJB annotation.
The annotation injects a bean called InterestRateMBean, which is the service object
that implements the InterestRateManager interface and manages the interest rate
for the investment calculator. The management interface shown in listing 7.18 uses
the @Management annotation to make the interface methods available through an
MBean server.

@Management
public interface InterestRateManager {
 // Attribute
 public void setInterestRate(double g);
 public double getInterestRate();
 // Life cycle method
 public void create() throws Exception;
 public void destroy() throws Exception;
}

The interface for the MBean is annotated with the @org.jboss.ejb3.annotation.
Management interface. This annotation tells JBoss AS that the interface is a manage-
ment interface for a service object. Any method on the management interface that
abides by the JavaBean’s set and get method syntax becomes a JMX attribute on the
MBean. Any other method becomes an MBean operation. Because MBeans have a life-
cycle, you need to tie into the lifecycle operations with the create and destroy meth-
ods defined on the interface. Listing 7.19 shows you the code for an MBean that
implements the managed interface.

@Service(objectName = "jbia:service=interestRateManager")
public class InterestRateMBean implements InterestRateManager {
 private double interestRate;
 public void setInterestRate(double interestRate) {
 this.interestRate = interestRate;
 }
 public double getInterestRate() {

Listing 7.17 Code for remote interface

Listing 7.18 @Management interface for sample application

Listing 7.19 MBean that manages interest rate for investment calculator application

186 CHAPTER 7 Configuring enterprise applications
 return interestRate;
 }
 // Lifecycle methods
 public void create() throws Exception {
 interestRate = 5.25;
 System.out.println("Calculator - Creating");
 }
 public void destroy() {
 System.out.println("Calculator - Destroying");
 }
}

The MBean class has the @org.jboss.ejb3.annotation.Service annotation on the
class. This annotation tells JBoss AS that an instance of this class is a service object.
When this object is deployed, the container maintains it as a singleton. The object-
Name attribute defines the JMX name that the service gets bound to in the JMX server.
Now that you’ve created the code for the service object, let’s see how to run it and try
it out. Both the @Service and the @Management annotation classes are found in the
client/jboss-ejb3-ext-api.jar file, as well as in the client/jbossall-client.jar file.

7.6.2 Running the sample application

After writing the code for the application, you need a client that can access the calcu-
lator. The main method for the client looks up the dynamic proxy for the calculator
and makes calls to it as follows:

Calculator calc =

➥ (Calculator) ctx.lookup("StatelessCalculatorBean/remote");
System.out.println(calc.calculate(1, 10, 100));

 If you run the code, the output is 15947.906560388028, which you get when the
interest rate is set to the default value of 0.08. Now, if you want to change this value,
you do the following:

1 Go to the JMX Console: http://127.0.0.1:8080/jmx-console/
2 Navigate to the jbia:service=interestRateManager MBean, which is probably

the only MBean listed under the jbia JMX domain.
3 Modify the InterestRate attribute.

Figure 7.8 shows you a screen shot of the JMX Console for this bean.
 As you can see in the image, the InterestRate attribute allows you to change the

interest rate for the service object, and the lifecycle methods are listed as operations.
Modify the interest rate, and run the client again to see the value change.

 You can also access service objects from other components besides EJBs. Let’s see
how.

187Creating JMX service objects
7.6.3 Accessing MBeans without injection

In the example, you accessed the interest rate service object using EJB injection. But
what if you wanted to access the service object from a non-EJB component such as a serv-
let or a JSP? You can access a service object programmatically using the following code:

MBeanServer server = MBeanServerLocator.locate();
calcManager = (InterestRateManager) MBeanProxyExt.create(

➥ InterestRateManager.class,

➥ "jbia:service=interestRateManager",server);

You’ve seen how to use service objects. Now, let’s explore another important configu-
ration related to EJBs: accessing them using different transport protocols.

Figure 7.8 The JMX management screen for the InterestRateMBean MBean

188 CHAPTER 7 Configuring enterprise applications
7.7 Configuring the transport protocol
Many web-based Java EE applications are deployed in a topology where the web server
and EJB server are collocated, obviating the need for remote calls to EJBs. But some
applications and topologies require some form of remote EJB access. At that point, the
question arises as to which transport protocol you should use to call your EJBs. In most
cases, a standard socket-based protocol works fine. JBoss AS is preconfigured to sup-
port socket calls to EJBs. But sometimes you may want to change or reconfigure the
transport protocol used for remote calls to the server. For example, you may have a
network security restriction that limits you to tunneling EJB calls over HTTP.

 In this section, we discuss the architecture and configuration behind JBoss
Remoting, the framework used for making EJB calls remotely. You’ll learn what con-
figuration changes need to be made to support a different transport protocol. Many
different transports are supported by JBoss Remoting, so we couldn’t possibly cover
them all. We show you how to configure the application server to accept remote EJB
calls over Remote Method Invocation (RMI). This explanation, along with the over-
view of the architecture, should give you enough background to read through the
JBoss Remoting documentation and learn how to configure any of the other avail-
able transport protocols. Let’s start with a discussion about how the transport proto-
col configuration works.

7.7.1 Understanding transport configuration

JBoss AS uses the new JBoss Remoting framework to enable EJB remoting. Several com-
ponents interact to make EJB remoting possible, as shown in figure 7.9.

 As we’ve discussed previously, an EJB client makes calls to a dynamic proxy that has
been downloaded from a JNDI server. The dynamic proxy uses the JBoss Remoting

Figure 7.9 The components involved in EJB remoting. The black lines represent runtime interactions
between components. The white lines show how the various configuration files define and bind the
components together.

189Configuring the transport protocol
framework to call a server invoker B. A server invoker’s job is to read requests on a par-
ticular transport and forward them to one or more invocation handlers that handle the
requests. The server invoker is created by a connector C, a component configured in
the server/xxx/deploy/remoting-service.xml file. When the connector component is
created, it creates the server invoker and binds it (or connects it) to its invocation han-
dlers D—hence, the name connector.

 The application server defines an invocation handler known as the Unified Invoker E
that can be configured to call various EJB containers F used for different types of EJBs.
The Unified Invoker’s configuration can be found in the server/xxx/deploy/remoting-
service.xml file. (Don’t get confused by the name Unified Invoker. The Unified Invoker
isn’t an invoker; it’s an invocation handler.)

 When a dynamic proxy sends a request from the client to the server, it specifies
which invocation handler it wants the request directed to. The request has to carry
some information that tells the server invoker which invocation handler it wants to
use. The dynamic proxy is provided with this information when it’s created by its proxy
factory, the component that creates new dynamic proxies. The proxy factory is bound
to an invocation handler. When the proxy factory is asked to create a new dynamic
proxy, it confirms that the dynamic proxy knows how to generate requests that wind
up at the correct invocation handler.

 The binding between the invocation handler and the proxy factory can be done in
one of two places. The default configuration for proxy factories is in the server/xxx/
conf/standardjboss.xml file. The invoker-proxy-binding elements in this file define
proxy factories G and bind them to their invocation handlers H. This same defini-
tion and binding I can also be done in an application’s META-INF/jboss.xml file.

 The Unified Invoker needs a way to forward to the appropriate EJB container
based on the type of EJB request. This forwarding can be done in the server/xxx/
conf/standardjboss.xml file or in the application’s META-INF/jboss.xml file using the
container-configuration element that we discussed in section 7.4.3. This element
defines an EJB container and associates it with an invoker-proxy-binding that can
call it.

 The server/xxx/conf/standardjboss.xml (or the application’s META-INF/jboss.xml
file) contains the invoker-proxy bindings. An invoker-proxy-binding defines a
proxy factory and binds it to an invocation handler. Listing 7.20 shows you the bind-
ing that defines the SLSB dynamic-proxy factory and binds it to the Unified Invoker.

<invoker-proxy-binding>
 <name>stateless-unified-invoker</name>
 <invoker-mbean>
 jboss:service=invoker,type=unified</invoker-mbean>
 <proxy-factory>
 org.jboss.proxy.ejb.ProxyFactory</proxy-factory>
 <proxy-factory-config>
 <client-interceptors>

Listing 7.20 invoker-proxy-binding binding to Unified Invoker

B

C

190 CHAPTER 7 Configuring enterprise applications
 ...
 </client-interceptors>
 </proxy-factory-config>
</invoker-proxy-binding>

The invoker-mbean element B specifies the MBean name for the invocation handler
that the proxy factory injects into dynamic proxies that it creates. The proxy-factory-
config element C defines the proxy factory. The same files (standardjboss.xml and
jboss.xml) contain the container definitions for the different EJB request types. We
looked at these in section 7.4.3. The container is tied to the invoker-proxy-binding in
the container configuration’s invoker-proxy-binding-name element. To bind to the
invoker-proxy-binding shown in the listing, a container configuration has to have the
following element defined:

<invoker-proxy-binding-name>stateless-unified-invoker
➥ </invoker-proxy-binding-name>

The invoker-proxy-binding-name element references one of the invoker-proxy-
binding elements defined in the same file. This reference indirectly binds the EJB
container to the invocation handler that the invoker-proxy-binding is already
bound to, allowing requests coming in from the client’s dynamic proxy to be routed
all the way through to the EJB container.

 The great thing about this architecture is that you don’t have to change any of the
container or proxy factory configurations to support a different transport protocol.
Because of the invocation handler abstraction and the existence of the Unified
Invoker, all you have to do is change the connector configuration to change the trans-
port. Let’s see how this might work.

7.7.2 Changing the transport

As we mentioned, changing the transport only requires a change to the connector
configuration in the server/xxx/deploy/remoting-service.xml file. For example, if
you want to change to an RMI transport instead of a socket-based transport, you
change the connector configuration to look like listing 7.21.

<mbean code="org.jboss.remoting.transport.Connector"
name="jboss.remoting:service=Connector,transport=RMI"

 display-name="RMI transport Connector">

 <attribute name="Configuration">
 <config>
 <invoker transport="rmi">
 ...
 </invoker>

 <handlers>
 <handler subsystem="invoker">
 jboss:service=invoker,type=unified

Listing 7.21 Updated connector configuration that supports RMI transport

C

B
C

D

191Securing EJBs
 </handler>
 </handlers>
 </config>
 </attribute>
 <depends>jboss.remoting:service=NetworkRegistry</depends>
</mbean>

Changing the transport attribute on the invoker element D tells the connector to
create an RMI-based server invoker when the connector is created. The supported
options here are socket, sslsocket, http, https, multiplex, sslmultiplex, servlet,
sslservlet, rmi, and sslrmi. These options are all fully documented in the JBoss
Remoting documentation referenced at the end of this chapter.

 The changed display name for the MBean C reflects the new purpose of the con-
nector. You don’t have to make this change, but it makes sense to have the name match
what the connector does. The name of the MBean itself also changed B. You don’t have
to do this either because the MBean name is still unique in the MBean server, but it also
makes more sense to do this. Remember that, if you update this name, you also want to
update any references to it—for example, the Unified Invoker definition in listing 7.19
that references the socket connector’s MBean name as an MBean dependency. You want
to update this definition in the server/xxx/deploy/remoting-service.xml file to have
the correct name in the MBean dependency, as follows:

<mbean code="org.jboss.invocation.unified.server.UnifiedInvoker"
 name="jboss:service=invoker,type=unified">
 <depends>jboss:service=TransactionManager</depends>
 <depends>jboss.remoting:service=Connector,transport=RMI</depends>
</mbean>

You should now have enough of an understanding to configure transport protocols in
JBoss. If you need to use a transport that we didn’t talk about, you should be able to read
through the JBoss Remoting documentation and learn the details about the other trans-
ports. Now, let’s build on top of what you learned about security in chapter 4 to see how
security is applied to EJBs.

7.8 Securing EJBs
Any remotely accessible component requires security. Entities don’t require security
because they’re not remotely accessible. We discuss security for message-driven beans
in chapter 8, “JBoss Messaging.” So we only need to cover session beans in this section.

 Session EJBs can be accessed from within the application server or from remote cli-
ents. If an EJB is accessed from the integrated web container running in the same
application server instance as the EJB container, then the web application doesn’t have
to explicitly pass the security credentials to the EJB server. In this case, the web con-
tainer can call the EJB by merely looking up and calling a dynamic proxy, as we dis-
cussed in section 7.4.2. The security credentials are automatically propagated from
the web container to the EJB container. Even though the web application is an EJB cli-
ent, it doesn’t need to pass credentials to the EJB server. If an EJB is accessed remotely

192 CHAPTER 7 Configuring enterprise applications
from a standalone application or web container running in a different JVM process,
then the security credentials have to be passed to the EJB server from the client.

 Web applications enable security for particular URL patterns. EJBs, on the other
hand, are secured on an individual method basis. Security can be added to EJB meth-
ods (public methods declared in the EJB’s business interface) using either standard
Java EE annotations or XML descriptor files. We talk about both methods in this sec-
tion. Let’s start with annotations.

7.8.1 Securing EJBs via annotations

The simplest way to add security to EJB methods is by using annotations. Listing 7.22
shows you an example of an SLSB that uses annotations to secure its methods.

@SecurityDomain("simple-security-domain")
@RolesAllowed({ "bank-manager", "teller" })
@Stateless
public class StatelessCalculatorBean implements Calculator, CalculatorRemote
{
 public double calculateTotalInterest(double presentValue, int years) {
 return calculateFutureValue(presentValue, years) - presentValue;
 }
 @RolesAllowed("teller")
 public double calculateFutureValue(double presentValue, int years) {
 double interestRate = 5.25 / 100;
 return presentValue * Math.pow((1.0 + interestRate), years);
 }
 @RolesAllowed("bank-manager")
 public double getInterestRate() {
 return 5.25;
 }
 @DenyAll
 public String getTheAnswerToLifeTheUniverseAndEverything() {
 return "42";
 }
 @PermitAll
 public String freeForAll() {
 return "You're in!";
 }
}

First, you’ll notice that the @SecurityDomain annotation is defined at the class level
and is used to specify which security domain this particular EJB class will use. The attri-
bute in the annotation points to the name of the security domain defined in the
server’s login-config.xml file. Also note that you don’t need to specify the java:/jaas
prefix in the annotation.

 The three annotations—@RolesAllowed, @PermitAll, and @DenyAll—are used
to specify method-level authorization on the EJB. Table 7.2 summarizes these
annotations.

Listing 7.22 Adding security to EJBs using annotations

193Securing EJBs
The @RolesAllowed annotation defined at the class level specifies the default security
access for all the methods in the class. Therefore, the calculateTotalInterest()
method requires either the role bankmanager or teller. The calculateFuture-
Value() method and the getInterestRate() methods each define their own roles,
which completely override any roles defined at the class level. If no class-level roles are
defined and a method also has no roles defined, then that method can be accessed
by anybody.

TIP Make sure you’re referencing the correct annotation class. For example,
there’s an org.jboss.annotation.security.SecurityDomain annota-
tion class and an org.jboss.aspects.security.SecurityDomain anno-
tation class. Because they share a name and they both take the same
number and type of arguments, it’s easy to import the wrong class
(org.jboss.aspects.security.SecurityDomain) when annotating an
EJB with security.

If you try to access the methods on this class with different users who have different
permissions, you can see what methods can and can’t be accessed. For example:

--
User: admin, Roles: bank-manager, teller
--
admin could call calculateFutureValue (requires 'teller')
admin could call calculateTotalInterest (requires 'bank-manager' or 'teller')
admin could call getInterestRate (requires 'bank-manager')
admin could not call getTheAnswerToLifeTheUniverseAndEverything (DenyAll)
admin could not call freeForAll (PermitAll)
--
User: bank-manager, Roles: bank-manager
--
bank-manager could not call calculateFutureValue (requires 'teller')

Table 7.2 The Java annotations used to specify security for EJB methods

Annotation Description

@javax.annotation.security.RolesAllowed A standard EJB3 annotation used to
define which roles have access to a
given method

@javax.annotation.security.PermitAll A standard EJB3 annotation used to sig-
nify that any authenticated user can
access the method

@javax.annotation.security.DenyAll A standard EJB3 annotation used to sig-
nify that no users can access the
method

@org.jboss.ejb3.annotation.SecurityDomain A JBoss-specific annotation used to
define the security domain that calls to
this bean will be routed to

194 CHAPTER 7 Configuring enterprise applications
bank-manager could call calculateTotalInterest (requires 'bank-manager' or
'teller')

bank-manager could call getInterestRate (requires 'bank-manager')
bank-manager could not call getTheAnswerToLifeTheUniverseAndEverything

(DenyAll)
bank-manager could not call freeForAll (PermitAll)
--
User: teller, Roles: teller
--
teller could call calculateFutureValue (requires 'teller')
teller could call calculateTotalInterest (requires 'bank-manager' or

'teller')
teller could not call getInterestRate (requires 'bank-manager')
teller could not call getTheAnswerToLifeTheUniverseAndEverything (DenyAll)
teller could not call freeForAll (PermitAll)
--
User: joe, Roles: customer
--
joe could not call calculateFutureValue (requires 'teller')
joe could not call calculateTotalInterest (requires 'bank-manager' or

'teller')
joe could not call getInterestRate (requires 'bank-manager')
joe could not call getTheAnswerToLifeTheUniverseAndEverything (DenyAll)
joe could not call freeForAll (PermitAll)

If you study the output carefully, you’ll notice that some of the results are incorrect.
Unfortunately, bugs in the beta version of JBoss 5 prevented us from seeing the cor-
rect output. We hope these will be fixed by the GA release.

 We don’t have any annotations to define authentication because we don’t have dif-
ferent challenge-response strategies for authenticating EJB clients like we did for web
clients.

 There’s some debate on whether security annotations should be used, or whether
security configuration is better kept in configuration files because security roles may
change. Our experience is that it’s generally safe to define security in annotations.
Security roles are logical and shouldn’t change dynamically in a production system.
If you need to change security roles, you’ll likely want to do it as part of a full release
cycle that includes running all your acceptance tests. At that point, it doesn’t matter
if the information is kept in deployment descriptors or in annotations. That being
said, you may have environment or process constraints that force you to keep secu-
rity information in deployment descriptors, so let’s explore how to use them to con-
figure security.

7.8.2 Securing EJBs via configuration

If you want to define security declaratively, you can do so in the EJB deployment
descriptors: META-INF/ejb-jar.xml and META-INF/jboss.xml. You can also use the
deployment descriptors to override security settings made in annotations. You can
define the security domain for the entire application by using the following in the
META-INF/jboss.xml file:

195Securing EJBs
<jboss>
 <security-domain>greeterDomain</security-domain>
</jboss>

You can define the method-level security in your application’s META-INF/ejb-jar.xml
file. Listing 7.23 shows you an example of an XML configuration that adds security
constraints equivalent to those specified using annotations in listing 7.22.

<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
 version="3.0">
 <assembly-descriptor>
 <security-role>
 <role-name>texan</role-name>
 </security-role>
 <method-permission>
 <role-name>texan</role-name>
 <method>
 <ejb-name>TexanGreeter</ejb-name>
 <method-name>sayHello</method-name>
 </method>
 </method-permission>
 <method-permission>
 <unchecked/>
 <method>
 <ejb-name>TexanGreeter</ejb-name>
 <method-name>getName</method-name>
 </method>
 </method-permission>
 <exclude-list>
 <method>
 <ejb-name>TexanGreeter</ejb-name>
 <method-name>canGreet</method-name>
 </method>
 </exclude-list>
 </assembly-descriptor>
</ejb-jar>

Here, you apply the same security conditions that you did in the example code with
annotations in the previous section. The method-permission block contains role-
name elements that specify the roles that can access the methods defined in the method
block. You also use the unchecked attribute to get the same behavior as the @PermitAll
annotation. And if you want to exclude a method from any access (like @DenyAll), you
use the exclude-list block instead of defining a method-permission block.

7.8.3 Nonintegrated security

A nonintegrated client trying to access the EJB container from outside of the applica-
tion server must pass security credentials to the server. Nonintegrated clients include

Listing 7.23 Security constraints defined with XML configuration

196 CHAPTER 7 Configuring enterprise applications
any out-of-process applications, out-of-process web containers, or code running in
other application server instances. The dynamic proxy that the client obtains from the
server is responsible for propagating the principal and credential information to the
server. The EJB container has a security interceptor that takes the security credentials
and forwards them to the appropriate security domain to handle authentication and
authorization.

 The Java EE specification says that a nonintegrated client must be able to log in
using JAAS, as shown in listing 7.24.

import javax.security.auth.login.LoginContext;
import javax.security.auth.callback.CallbackHandler;
import org.jboss.security.auth.callback.SecurityAssociationHandler;
...
SecurityAssociationHandler handler = new SecurityAssociationHandler();
SimplePrincipal user = new SimplePrincipal("javid");
handler.setSecurityInfo(user, "test".toCharArray());
LoginContext loginContext =
 new LoginContext("myClientDomain",
 (CallbackHandler) handler);
loginContext.login();
InitialContext ctx = new InitialContext();
CalculatorRemote calculator = (CalculatorRemote)
 ctx.lookup("calculator/StatelessCalculatorBean/remote");

Here you do a standard JAAS login using a JBoss implementation of the JAAS Call-
backHandler interface called SecurityAssociationHandler B. When the Login-
Context.login() method is called C, it calls the handler to get the username and
password. The handler is passed in as the second parameter to the LoginContext con-
structor D. The principal and the password are passed in to the handler using the
setSecurityInfo() method E.

NOTE If you want your client code to be completely free of all JBoss dependen-
cies, you can write your own implementation of CallbackHandler. This is
rather easy; see the references for a link to an article that shows you how.

JAAS requires that you define a login module for the client to use. JBoss provides a cli-
ent login module called org.jboss.security.ClientLoginModule. To define a JAAS
login module, you create a properties file (for example, named auth.conf) that looks
like the following:

myClientDomain {
 org.jboss.security.ClientLoginModule required;
};

The first word in the file, myClientDomain, is the name of the login module (also
called a domain in JAAS). The client code knows which domain to use because the
LoginContext constructor takes the domain name as its first argument.

Listing 7.24 Specifying EJB security credentials using a JAAS callback handler

B

E

D
C

197Securing EJBs
 For the client to to access the properties file, you must set the java.security.
auth.login.config system property. You pass this in as a JVM parameter, as follows:

java -Djava.security.auth.login.config=auth.conf MyProgram

You’ve seen how to propagate security credentials from the client to server to authen-
ticate and authorize the client. Now, let’s see how you can enable secure communica-
tion for EJB communication.

7.8.4 Securing EJB communication

Many web-based applications enable encryption on the web tier and only allow access
to EJBs and other middle-tier components through the web tier. Because the commu-
nication between the web tier and the EJB tier usually happens behind a firewall, it’s
often unnecessary to communicate with EJBs using an encrypted protocol. But, if
you’re running a standalone client (such as a GUI application), it may call EJBs
directly. In this case, you may choose to encrypt communication to your EJBs.

 To set up secure EJB communication over SSL, you need to do the following:

1 Create a server certificate inside of a keystore.
2 Export the server certificate.
3 Import the server certificate into a client truststore.
4 Configure a connector to support SSL.
5 Point the server to the server keystore.
6 Point the client to the client truststore.

We talked about the first three steps in chapter 4. To recap, these steps go something
like this:

1 keytool -genkey -alias serverCertificate -keyalg RSA -validity 1500
 ➥ -keystore server.keystore -keypass serverpass –storepass serverpass

2 keytool -export -alias serverCertificate -keystore server.keystore
 ➥ -storepass serverpass -file server.cer

3 keytool -import -alias serverCertificate -keystore client.truststore
 ➥ -storepass clientpass -file server.cer

The fourth step builds on what you learned about configuring the server invoker in
section 7.7. You have to define a new JBoss Remoting connector and point your EJBs to
it. You do this by creating a new *-service.xml file in the server/xxx/deploy directory
as shown in listing 7.25.

<?xml version="1.0" encoding="UTF-8"?>
<server>
 <mbean code="org.jboss.remoting.transport.Connector"

 name="jboss.remoting:type=Connector,transport=sslsocket3843,
➥ handler=ejb3">

Listing 7.25 Creating a connector that points to an SSL-aware server socket factory

198 CHAPTER 7 Configuring enterprise applications
 <attribute name="InvokerLocator">
 sslsocket://${jboss.bind.address}:3843
 </attribute>
 <attribute name="Configuration">
 <config>
 <handlers>
 <handler subsystem="AOP">
 org.jboss.aspects.remoting.AOPRemotingInvocationHandler
 </handler>
 </handlers>
 </config>
 </attribute>
 </mbean>
</server>

You configure the invoker with an InvokerLocator attribute B, which defines the URL
that the invoker binds to. Note that the protocol is sslsocket and the port is 3843. The
address is set to a variable populated with the bind address set with the –b option when
you start JBoss. An invocation handler C is defined using an aspect-oriented program-
ming (AOP)–based handler called AOPRemotingInvocationHandler. This handler obvi-
ates the need to explicitly point the connector to the unified invoker.

 Your EJB must point to the SSL invoker. We talked about how to bind an EJB to an
invoker using XML configuration earlier in the chapter. With EJB3, you can also bind
your beans to an invoker using annotations. Listing 7.26 shows you an example.

import javax.ejb.Stateless;
import org.jboss.ejb3.annotation.RemoteBinding;
import org.jboss.ejb3.annotation.RemoteBindings;

@RemoteBindings({
 @RemoteBinding(clientBindUrl = "sslsocket://127.0.0.1:3843",
 jndiBinding="StatelessSSL")
 })
@Stateless
public class GreeterBean implements Greeter {
 ...
}

An EJB can be bound to multiple invokers using the @RemoteBindings B annotation,
which contains one or more @RemoteBinding annotations. Each @RemoteBinding
annotation defines a clientBindUrl attribute set to point to the InvokerLocator URL
you defined in the connector MBean. The annotation also contains a jndiBinding
attribute that defines the JNDI name you use to look up the bean proxy that will access
the invoker. Your client application looks up the bean as follows:

Greeter greeter = (Greeter) ctx.lookup("StatelessSSL");

The jndiBinding attribute is optional because you can look up a bean by its default
name, as we discussed earlier in the chapter. That’s all the code you need; all that’s

Listing 7.26 Binding EJB to invoker using annotations

B

C

B

199Summary
left is to start your server and run your client. Start your server with the following
JVM arguments:

./run.sh -Djavax.net.ssl.keyStore=/path/to/server.keystore

➥ -Djavax.net.ssl.keyStorePassword=serverpass -c enterprise

The javax.net.ssl.keyStore argument should point to the path where your server key-
store exists, and the javax.net.ssl.keyStorePassword should contain the password for
your server keystore.

 Last, you must point your client code to the truststore using the following arguments:

java -Djavax.net.ssl.trustStrore=/path/to/client.truststore

➥ -Djavax.net.ssl.trustStorePassword=clientpass com.manning.jbia.Client

After downloading the remote proxy that points to the SSL invoker, the client can
send requests to the server over SSL.

7.9 Summary
We started the chapter by giving you background on enterprise Java components and
packaging. We talked about how session beans work in JBoss AS through the use of
dynamic proxies. We then talked about Hibernate and JPA, giving you background on
how the persistence and business side of enterprise Java fit into the JBoss world. We
wrapped up the discussion by introducing you to the package structure for an enter-
prise application.

 We walked you through how to build an enterprise application where a client
could send greeting messages from a client to a server where they were persisted. The
client could then load the messages, allowing you to see how session EJBs and persis-
tent entities are built, packaged, deployed, and called in JBoss AS.

 Next, we took a look at how to configure EJB applications and the application server.
We talked about where all the configuration files reside and what’s contained in each.
For EJB applications, we looked at the standard ejb-jar.xml and persistence.xml files, as
well as the proprietary jboss.xml file. For the server, we gave you an overview of the var-
ious services that are used for EJBs and showed you where to find them.

 After laying a foundation for how to configure EJB applications and the various
EJB containers and services, we took a closer look at session beans. You learned how
to configure the JNDI bindings for the beans using both annotations and configura-
tion files. You also learned how JBoss binds session beans into JNDI and how to load
them from a client application. Then, we looked at the various EJB container config-
urations, and you learned how to configure session-bean pool sizes and bean passiva-
tion timeouts.

 After talking about session beans, we talked about entity beans. Most of the config-
uration for entity persistence is done through annotations and is part of the standard
specification, but you learned how to inject Hibernate objects into entities and how to
deploy Hibernate mapping files that could be accessed and used as JPA entities.

200 CHAPTER 7 Configuring enterprise applications
 Next, we talked about JMX service objects, which significantly simplify the ability to
deploy MBean services in JBoss AS. You created a simple calculator management ser-
vice object and injected it into a calculator EJB. You also learned how to access the
MBean without injection.

 After learning about service objects, you learned how to configure the transport
protocol. We gave you an overview of how the transport protocols are configured for
an application. Then, we showed you how you could change the configuration in your
application or in the global deployment descriptor by changing the existing socket-
based configuration to support RMI calls.

 Last but not least, we talked about EJB security. We showed you how EJB method
access could be restricted to only certain roles on the server. We also showed you how
nonlocal client applications could pass security credentials to the EJB server using the
SecurityAssociation class, JAAS, or a JNDI initial context factory. We then talked
about secure EJB communication by showing you how to configure the EJB connector
to support SSL.

7.10 References
Interceptor chains—http://labs.jboss.com/jbossas/docs. At the time of writing this entry, chapter

11 of the JBoss AS 5.0.0 Configuration Guide discusses customizing interceptor chains in
the standardjboss. xml file.

JBoss Remoting documentation—http://labs.jboss.com/jbossremoting/docs/index.html
UnifiedInvoker guide—http://docs.jboss.org/jbossas/unified_invoker/

UnifiedInvoker_guide.html
Customizing EJB security in JBoss—http://www.javaworld.com/javaworld/jw-02-2002/jw-0215-

ejbsecurity. html. Although this article references previous versions of EJB technology,
you can accomplish context-based security in much the same way using EJB3 interceptors.

JPA specification—http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
Invoking EJBs through SSL—http://labs.jboss.com/jbossejb3/docs/tutorial/ssl/ssl.html
Writing your own CallbackHandler to handle JAAS security for a standalone client–http://jaikiran.

wordpress.com/category/jaas/

http://labs.jboss.com/jbossas/docs
http://labs.jboss.com/jbossremoting/docs/index.html
http://docs.jboss.org/jbossas/unified_invoker/UnifiedInvoker_guide.html
http://docs.jboss.org/jbossas/unified_invoker/UnifiedInvoker_guide.html
http://www.javaworld.com/javaworld/jw-02-2002/jw-0215-ejbsecurity. html
http://www.javaworld.com/javaworld/jw-02-2002/jw-0215-ejbsecurity. html
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://labs.jboss.com/jbossejb3/docs/tutorial/ssl/ssl.html
http://jaikiran.wordpress.com/category/jaas/
http://jaikiran.wordpress.com/category/jaas/

JBoss Messaging
The previous chapters covered many examples of different types of applications
that are deployed to the application server. All the applications have one thing in
common—they all use synchronous communications mechanisms to interact with
each other. In many cases, this is exactly what you want. For example, it makes no
sense to reply to a customer query about how many items are in inventory until the
inventory EJB has returned that information.

 Sometimes you might prefer to communicate asynchronously with another
application or with a component within the same application. For example, stan-
dard accounting business practices might require that a log is maintained of cer-
tain transactions. You might prefer that the log be written asynchronously so that
you don’t hold up the transaction from completing. But you still want a guarantee
that the log entry is made. Messaging systems evolved to solve this kind of problem.

This chapter covers
■ Understanding messaging systems
■ Developing a simple JMS client
■ Using message-driven beans (MDB)
■ Using message-driven POJOs
■ Configuring JBoss Messaging
201

202 CHAPTER 8 JBoss Messaging
 In this chapter, we cover the messaging system that comes with JBoss AS 5.0, JBoss
Messaging. The JBoss team developed JBoss Messaging from the ground up to provide
a high-performance and highly scalable messaging server. It replaces the JBossMQ mes-
saging server that came with earlier versions of JBoss AS. We don’t cover JBossMQ in this
chapter, although many of the concepts and applications presented work with it also.

 This chapter starts with an overview of messaging systems in general, and the Java
Message Service (JMS) in particular. We then present a simple messaging client and
follow that with an example EJB message-driven bean. After that we go into the archi-
tecture and configuration of JBoss Messaging. All the JBoss Messaging–specific infor-
mation is located together in the second half of this chapter. If you’re already familiar
with JMS, you can skip ahead to section 8.1.4. If you’re an administrator or a developer
interested in configuring JBoss Messaging, you can skip to section 8.5

8.1 Understanding messaging systems
Messaging systems have been around for some time. Many of the larger systems ven-
dors have provided messaging-oriented middleware (MOM) for many years, such as
IBM’s MQSeries. With the advent of the Java programming language, many of these
MOM vendors started to provide APIs that enabled Java applications to participate in
the exchange of messages. Unfortunately, every vendor had a different API, which
defeated the whole write-once-run-anywhere paradigm; and so, the Java Specification
Request 914 (JSR-914) expert group—led by Sun Microsystems—was formed to define
a standard API for messaging, the JMS API.

 Initially, the expert group imagined that JSR-914 would be used to access existing
MOMs. In this way, it was akin to the Java Database Connectivity (JDBC) API, which pro-
vides an API to access relational databases. But as the Java platform matured and pro-
vided increased reliability, scalability, and performance, messaging systems built
entirely in Java emerged. JBoss Messaging is one of these new-generation, pure-Java
messaging systems.

 The JSR-914 expert group faced two challenges—the existing MOMs used two dif-
ferent architectures and supported two different messaging models. The next sections
examine these architectures and models.

8.1.1 Understanding messaging system architectures

As illustrated in figure 8.1, two basic architectures are used for a MOM: centralized
and decentralized.

 The centralized architecture uses a centralized server to which all messaging cli-
ents connect. The clients send messages to the centralized server, which is responsible
for delivering the messages to the proper recipients. The use of a centralized architec-
ture doesn’t preclude clustering the server so that multiple servers share the responsi-
bility of routing the messages—often necessary as the system outgrows the capacity of
a single server. In such a case, the cluster is thought of as a centralized server.

 The decentralized architecture delegates the responsibility of message handling to
the clients. The client messaging components communicate with each other to pass

203Understanding messaging systems
messages. In some cases, a router using multicast facilitates this communication. In
other cases, the client messaging component communicates directly to other client
messaging components.

 There are pros and cons to both architectures. With a centralized architecture, you
can run the messaging server on a high-powered server with fast disks to handle the
storing of messages in a database. On the other hand, every message makes at least
two network hops to get to its recipient—first to the server and finally to the recipient.
With a decentralized architecture, messages can go directly from originator to recipi-
ent and, when using multicast, to multiple recipients simultaneously. On the negative
side, each client must run on a higher-end computer because each client computer is
now charged with handling and storing messages.

8.1.2 Understanding the messaging models

There are two messaging models
supported by JSR-914: point-to-point
and publish-and-subscribe. With point-
to-point messaging, a sender places
messages in a queue, and from there,
it’s delivered to one receiver. Several
senders can place messages on the
same queue, and multiple receivers
can receive them, but an individual
message is delivered to only one receiver. Having multiple receivers is a benefit in a
high-volume situation because the workload of handling the messages can be distrib-
uted among the receivers. Point-to-point messaging is illustrated in figure 8.2.

 With publish-and-subscribe messaging, a publisher places messages in a topic. Every
subscriber registered to receive messages on that topic receives a copy of the message.
Publish-and-subscribe messaging is illustrated in figure 8.3.

Messaging
client

Messaging
client

Messaging
server

Centralized architecture

Messaging
client

Messaging
client

Messaging
client

Router

Decentralized architecture

Figure 8.1 There are
two message system
architectures: the
centralized archi-
tecture and the
decentralized
architecture.

Publisher Topic

Subscriber

Subscriber

Figure 8.3 With publish-and-subscribe
messaging, each message is placed into
a topic and read by all subscribers.

Sender Queue

Receiver

Receiver

Figure 8.2 With point-to-point messaging, each
message sent by a sender is placed into a queue and
then handled by one—and only one—receiver.

204 CHAPTER 8 JBoss Messaging
The two models come in handy in different scenarios. In the earlier example of main-
taining a transaction log, the point-to-point model fits best. Every EJB processing
orders places transaction information on the audit queue. An auditing receiver reads
those messages and logs the transactions. If the system becomes busy, you can run
multiple instances of the auditing receiver to handle the load. Or you can decide not
to run the auditing receiver until the load on the system goes down; you can then
restart the auditing receiver, and it receives all messages placed on the auditing
queue. The messaging server places messages in permanent storage (typically a data-
base), holding them until the receiver is ready.

 The publish-and-subscribe model comes in handy in many business-to-business
cases where one business, the publisher, wants to make some information available to
all its business partners, the subscribers.

8.1.3 Understanding the JMS API

The JMS API doesn’t impact your choice of using a centralized or decentralized archi-
tecture for your MOM. Figure 8.4 illustrates the relationships among the various inter-
faces in the JMS API. All of these interfaces are in the javax.jms package.

 You can infer the general algorithm for working with messages from the figure.
For example, to receive messages, you do the following:

1 Locate a ConnectionFactory, typically using JNDI.
2 Use the ConnectionFactory to create a Connection.
3 Use the Connection to create a Session.
4 Locate a Destination, typically using JNDI.
5 Use the Session to create a MessageConsumer for that Destination.

Once you’ve done this, methods on the MessageConsumer enable you to either query
the Destination for messages or to register for message notification.

 Although it’s not shown in the figure, each interface has both point-to-point and
publish-and-subscribe interfaces that extend it. For example, the QueueSession inter-
face and the TopicSession interface extend the Session interface. In addition, there
are XA variations used to support messaging in a distributed transaction environment.

ConnectionFactory

Connection

Session

creates

creates

MessageProducer MessageConsumer

creates

Destination

find via JNDI

Figure 8.4 To use the JMS interfaces,
use JNDI to look up the ConnectionFactory
and Destination. Once you have the
ConnectionFactory, you can create a
Connection, Session, and either a
MessageConsumer or MessageProducer.

205Understanding messaging systems
These steps use the unified API introduced with the JMS 1.1 specification. This API
enables the application to be agnostic in regards to working with topics or queues. If
you use the various topic and queue-specific subclasses but later decide to change
from using a queue to using a topic (for example), then you also have to change your
code. If you use the unified API, you can easily change from using a queue to using a
topic (for example) without having to change your code.
UNDERSTANDING MESSAGES

You’ve probably noticed that we’ve
not yet defined what a message is—an
important topic, considering that this
chapter is about messaging. Although
you probably already know this, a mes-
sage is some data. What you want to know is: What kind of data can you send in a mes-
sage? And that’s the question we answer in this section.

 Figure 8.5 shows the anatomy of a message, which consists of a header, properties,
and a payload that contains the message data.

 The header area contains a set of properties, which are required by the JMS specifi-
cation and consist of values such as a unique message id, JMSMessageId, and the time-
stamp of when the message was sent, JMSTimestamp. Getters and setters are provided
on the javax.jms.Message interface to access these values. We don’t go into detail on
the header properties and the data they provide; you can read more about them in
the JMS specification.

 The properties area can contain several categories of properties, as described in
table 8.1. The Message interface provides methods to get and set the properties of a
message. In addition, a message receiver or subscriber can define a message selector
based on message properties so that it receives only those messages that match a cer-
tain criteria—much like using a WHERE clause in an SQL statement to access specific
data in a database. Although you can transmit an entire message using only properties
and no payload, you should place the message into the payload area and use the prop-
erties only for data that you might want to use to select messages.

Table 8.1 Message property categories

Property category Description

JMS-defined Optional properties described in the JMS specification. The names of these prop-
erties all begin with the string JMSX. Of the optional properties, JBoss Messaging
provides only the JMSXDeliveryCount property, which identifies how many
times the server attempted to deliver the message.

Vendor-specific Properties provided by the messaging service vendor. The names of these proper-
ties all begin with the string JMS_, followed by the vendor name. JBoss Messaging
doesn’t have any vendor-specific properties.

Application Properties provided by the client sending the message.

Header Properties Payload

Figure 8.5 A message consists of three data areas:
a header, a set of properties, and the payload.

206 CHAPTER 8 JBoss Messaging
The payload area contains the message data. JMS defines a number of different pay-
load types, each of which is handled by an interface. These interfaces are described in
table 8.2.

Now that you have an overview of JMS, let’s look at how the messaging specification is
implemented by JBoss Messaging.

8.1.4 Understanding the JBoss Messaging architecture

The JBoss Messaging architecture is illustrated in figure 8.6. It consists of components
that reside on the server and in the client. These components work together to pro-
vide a reliable and scalable messaging system.

Table 8.2 Message payload interfaces

Payload interface Description

Message Used for a message without any payload. This interface defines the setters and
getters for the header data and properties. The other interfaces in the table
extend the Message interface.

BytesMessage Used to send an array of uninterpreted bytes. This interface is provided to support
communication with external messaging systems.

MapMessage Used to send a message as a set of name/value pairs. The names are strings,
and the values can be any primitive type or a string.

ObjectMessage Used to send a serializable Java object. The recipient must have the class for the
object and all of its required supporting classes in its class path.

StreamMessage Used to send a stream of Java primitives and strings.

TextMessage Used to send a text string.

JBoss Application Server

JGroups

JBoss
Messaging
Core

JDBC

JMS Fa adeç

JB
os
s

R
em
ot
in
g

JBoss Messaging Server

JBoss Application Server

JGroups

JBoss
Messaging
Core

JDBC

JMS Fa adeç

JB
os
s

R
em
ot
in
g

JBoss Messaging Server

database database

JB
os
s
M
es
sa
gi
ng

cl
ie
nt
lib
ra
ry

JB
os
s

R
em
ot
in
g

JM
S
A
P
I

Client
app

JBoss Transactions

Figure 8.6 The JBoss Messaging architecture makes use of JGroups to provide a distributed, highly
available messaging server. It also uses JBoss Remoting to provide an efficient transport mechanism
between the client and the server.

207Developing a JMS application
The JBoss Messaging Core provides a generic messaging service that supports JMS and
can be easily extended to support other types of messaging. The Core is a distributed
and reliable message transport system based on JGroups. Because the Core is distrib-
uted, there’s no single point of failure when multiple servers are in use. The Core uses
a pluggable persistence manager to persist messages. It comes with a JDBC persistence
manager, but you can provide other persistence managers to store messages in other
data stores such as file-based or memory-based data stores. All messages are stored in
the database as binary large objects (BLOBs); therefore, you should use a database that
handles BLOBs efficiently.

 In the diagram, each Core has its own database, but multiple Cores can also share
a single database. JBoss Transactions provides two-phase commit capabilities among
multiple messaging servers. The JMS Façade makes the Core into a JMS provider. You
can provide other façades to implement other messaging systems.

 The JBoss Messaging client library provides a single JAR file containing all the nec-
essary libraries, including the JMS API used by the client application to communicate
with the messaging service. JBoss Remoting provides the communication mechanism
between the client and the server. JBoss Remoting is ideal for this task because it uses
pluggable transports and data marshallers. Current transports include TCP/IP, HTTP,
and a bidirectional socket transport similar to the UIL2 transport provided by JBossMQ.

8.2 Developing a JMS application
We introduce the example messaging client by describing the business problem that it
solves. The Sofa Spuds video store provides a video notification service to its custom-
ers. When a new video comes in or a rental video is returned, Sofa Spuds places a mes-
sage on a topic that can be subscribed to by its customers. Each customer is then
notified of the new video and can react to it. The example application is a simple pub-
lish-and-subscribe client that uses the command line to govern its behavior.

8.2.1 Coding the example application

You need to write both a publisher and a subscriber, and both need to access the same
topics, one to notify the customers of new videos and the other to send the customers’
requests to the store. A message can identify a dynamic queue on which the receiver
can reply to a message, simplifying the pro-
cess; but there’s a method to our madness,
and you must wait until we cover message-
driven beans in section 8.3 to find out why.

 Figure 8.7 provides a diagram showing the
interactions between the classes involved in
the application. Note that the messages passed
between the Customer and Store objects con-
tain a Video object.

 We describe the Video class first, then the
Store, and finally the Customer class.

VideoVideo CustomerStore

notify

reserve

Figure 8.7 The JMS example application
consists of three objects: Store and
Customer objects, which pass messages
containing a Video object between them.

208 CHAPTER 8 JBoss Messaging
CODING THE VIDEO JAVABEAN

The Video class, shown in listing 8.1, is a simple JavaBean passed in a message between
the Store and Customer classes. It contains the name of the movie, its genre, and a
toString method that both the Store and Customer classes will find handy.

package org.jbia.jms.sofaspuds;
public class Video implements java.io.Serializable {
 private String name;
 private String genre;
 <<getters and setters>>
 @Override public String toString() {
 return name + " [" + genre + "]";
 }
}

Note that we omitted the code for the getters and setters; you should be able to pro-
vide those.
CODING THE STORE CLASS

The Store class goes into a loop asking for new video information and sending it to
the customers via the notification topic. In addition, it’s notified of customers’ requests
for videos via the reservation request topic. The class is long, so we present it in sections,
preceding each section with a description of the purpose of the code.

 The Store class implements the MessageListener interface so that it can receive
asynchronous reservation requests from the customers, freeing the class from having
to constantly poll the topic for such requests. The class sends messages on one thread
and receives messages on a separate thread, a process which is controlled by the mes-
saging client component. You have to do more work in the class because it uses two
threads, as you’ll see later in the code. In addition, you declare an input stream, which
is used to get information about the video.

package org.jbia.jms.sofaspuds;
import java.io.*;
import javax.jms.*;
import javax.naming.*;
public class Store implements MessageListener {
 private BufferedReader rdr
 = new BufferedReader(new InputStreamReader(System.in));

You need only a single connection but require a session for each topic, a producer for
one topic, and a consumer for the other. Use two sessions because you publish mes-
sages on one thread and receive messages on a separate thread, and each thread
requires its own session; you can’t access a single session from multiple threads.

 private Connection connection;
 private Session sessionProducer;
 private Session sessionConsumer;
 private MessageProducer producer;
 private MessageConsumer consumer;

Listing 8.1 Video.java

209Developing a JMS application
The run method, the main method in the class, initializes the connection to the mes-
saging server. You have to find the connection factory and the topics; look them up
using JNDI. Use a jndi.properties file so that you don’t have to provide any properties
to locate the initial context. There’s nothing unique in the jndi.properties file, so we
don’t list it here; you can see one in the appendix. Once you have the initial context,
you can look up the three objects by name. For now, use the topics topic/testTopic
and topic/testDurableTopic that are provided by the messaging service. (You might
have to get these topics from the JBoss Messaging source download; they might not be
provided with JBoss AS. Look for the destinations-service.xml file.) Later, in sec-
tion 8.5.4, we show you how to declare and use your own topics and queues.

 private void run() throws Exception {
 try {
 Context initial = new InitialContext();
 ConnectionFactory cf =
 (ConnectionFactory)initial.lookup("ConnectionFactory");
 Destination notify =
 (Destination)initial.lookup("topic/testTopic");
 Destination request =
 (Destination)initial.lookup("topic/testDurableTopic");

Now that you have the connection factory, you create the connection and, from there,
the producer and consumer. You’re not using transactions (the false parameter to
createSession), and you want the messaging client component to automatically
acknowledge that it received the message (Session.AUTO_ACKNOWLEDGE parameter).
The latter means that you don’t have to acknowledge that you received the messages;
accepting the message implies receipt acknowledgement. Recall that the messaging
service guarantees delivery of messages; like signing for a package delivered by FedEx,
the message receiver must sign that it received the message. With auto acknowledge,
that signing is taken care of for you.

 connection = cf.createConnection();
 sessionProducer = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 sessionConsumer = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

You now create the producer and consumer. Each is created from its own session to
handle the issue with running multiple threads that we mentioned earlier.

 producer = sessionProducer.createProducer(notify);
 consumer = sessionConsumer.createConsumer(request);

Then establish the message listener, which receives the video reservations requests
from customers, and notify the messaging service that the class is ready to work with
messages. No messages are delivered until the start method is called.

 consumer.setMessageListener(this);
 connection.start();

The run method goes into a loop where it calls the notifyOfVideo method, which
gets information about a video and then publishes the information. You’ll see that

210 CHAPTER 8 JBoss Messaging
shortly. There’s a 10-second delay between loop iterations so that, when a customer
responds that she wants to reserve a video, the reservation notice doesn’t appear in
the middle of the request for the information about the next video. Although this isn’t
necessary, it does make the output look cleaner when we capture the output to
include in the next section.

 while (notifyOfVideos()) {
 Thread.currentThread().sleep(10 * 1000);
 }

Finally, any exceptions are handled by printing them out (not recommended for a
production program but suitable for a simple example). And the connection is closed
before the method exits. By closing the connection, the messaging client component
detaches the client from both topics and removes the listener from the topic to which
the code subscribed. Once the close method completes, the client can no longer
send or receive messages.

 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (connection != null) connection.close();
 }
 }

The first few lines of the notifyOfVideos method ask the user for the information
about the video. If any of the information is blank, the method exits, causing the pro-
gram to also exit.

 private boolean notifyOfVideos() throws Exception {
 System.out.println("Supply info for new video:");
 System.out.print("Name: ");
 String name = rdr.readLine();
 System.out.print("Genre: ");
 String genre = rdr.readLine();
 if (name.length() == 0 || genre.length() == 0) {return false;}

The information gathered about the video is used to initialize the Video object, which
is packaged into an object message and published to the notification topic. Any cus-
tomers listening to the notification topic are informed of the video. The method
returns true so that the loop in the run method repeats.

 Video video = new Video();
 video.setName(name);
 video.setGenre(genre);
 ObjectMessage om = sessionProducer.createObjectMessage(video);
 producer.send(om);
 return true;
 }

The onMessage method is called when a message is placed in the topic to which the
code is subscribed (in this case, the reservation request topic). The message is passed
in and converted to an ObjectMessage, after which the Video object is extracted. The

211Developing a JMS application
customer name is obtained from the message properties, and information about the
reservation request is printed to the console. The onMessage method, because of how
it’s defined by the MessageListener interface, can’t throw any exceptions, so it
catches all exceptions and reports them on the command line.

 public void onMessage(Message msg) {
 try {
 ObjectMessage om = (ObjectMessage)msg;
 Video video = (Video)om.getObject();
 String customer = om.getStringProperty("SpudsCustomer");
 System.out.println("Reservation request:");
 System.out.println("\tcustomer: " + customer);
 System.out.println("\tvideo : " + video);
 } catch (JMSException e) {
 e.printStackTrace();
 }
 }

The last method in the Store class, the main method, creates an instance of the class
and calls the run method.

 public static void main(String[] args) throws Exception {
 new Store().run();
 }
}

That completes the Store class. Only one class is left in the example: the Customer
class.
CODING THE CUSTOMER CLASS

The Customer class is also long, but it repeats much of the code already presented in
the Store class, specifically the code that established the messaging connection.
Although we could refactor the code to remove the redundancy, that would make the
example more complicated. Besides, practice makes perfect, right?

 The Customer class opens the video notification topic and waits for a message.
Once a message is received, it asks the user if he would like to reserve the video; if so,
it replies on the reservation request topic. The code is long, so we again present it in
sections—although we don’t repeat the descriptions of the message connection code
because we covered that in the description of the Store class.

 The first part of the class is the same as for the Store class but with two small differ-
ences. First, the class doesn’t implement the MessageListener interface because its
algorithm is simpler; it merely waits on one topic and replies on the other. Second,
because the class doesn’t implement the MessageListener interface, it doesn’t need
two sessions; one is sufficient.

package org.jbia.jms.sofaspuds;
import java.io.*;
import javax.jms.*;
import javax.naming.*;
public class Customer {
 private BufferedReader rdr =

212 CHAPTER 8 JBoss Messaging
 new BufferedReader(new InputStreamReader(System.in));
 private Connection connection;
 private Session session;
 private MessageProducer producer;
 private MessageConsumer consumer;

The first part of the run method is much the same as for the Store class but with
three differences. First, only one session is created. Second, the producer and con-
sumer are switched because the Customer class listens for video notifications and
sends reservation requests, the opposite of the Store class. Third, the loop to listen
for messages is infinite and doesn’t pause between messages. The code repeatedly
waits for the next message; the only way out is to Ctrl-C the program (definitely not
production quality but sufficient for a simple example).

private void run(String customer) throws Exception {
 try {
 Context initial = new InitialContext();
 ConnectionFactory cf =
 (ConnectionFactory)initial.lookup("ConnectionFactory");
 Destination notify =
 (Destination)initial.lookup("topic/testTopic");
 Destination request =
 (Destination)initial.lookup("topic/testDurableTopic");
 connection = cf.createConnection();
 connection.setClientID(customer);
 session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 producer = session.createProducer(request);
 consumer = session.createConsumer(notify);
 connection.start();
 for (;;) {listen(customer);}
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (connection != null) connection.close();
 }
 }

The listen method waits for a video notification message to come in on the con-
sumer destination. Once the message comes in, it extracts the Video object out of the
message, prints the information about the video, and asks the user if he would like to
reserve the video. If so, a response message is sent back to the store. The Video object
is wrapped within an ObjectMessage wrapper and sent to the destination producer
established earlier in the run method. Also, the customer name is added to the prop-
erties of the message. The name used for the property must be a valid Java name; a
name such as spuds.customer isn’t allowed. The property names can be used in message
selector statements—hence, the reason that they must be valid identifiers.

 public void listen(String customer) throws Exception {
 ObjectMessage om = (ObjectMessage)consumer.receive();
 Video video = (Video)om.getObject();
 System.out.println("New video available: " + video);

213Developing a JMS application
 System.out.print("Reserve a copy? ");
 String input = rdr.readLine();
 if (input.equalsIgnoreCase("y")) {
 om = session.createObjectMessage(video);
 om.setStringProperty("SpudsCustomer", customer);
 producer.send(om);
 }
 }

Finally, the main method verifies that the program was started with a customer name
as a parameter. If not, it displays a usage message. If a customer name was given, it
runs the program.

 public static void main(String[] args) throws Exception {
 if (args.length == 0) {
 System.out.println("usage: Customer <name>");
 } else {
 new Customer().run(args[0]);
 }
 }
}

In the text, we coded the three classes that we presented in the diagram at the start of
this section. Now let’s look at how to package and run them.

8.2.2 Packaging and running the example application

Packaging the code is simple: compile the classes and
place them into a JAR file. When compiling, make sure
that the jbossall-client.jar file is in the class path. The
examples of running the code assume that the result-
ing JAR file is named sofaspuds.jar and is in the cur-
rent directory. Figure 8.8 illustrates the contents of
the sofaspuds.jar file.

 Before you start any of the clients, make sure that
the application server is running. Because JBoss Mes-
saging is one of the services provided automatically
by the application server and because we used some
predefined topics that come with JBoss Messaging,
there’s no need to do any other configuration or preparation.

 Now that the application server is running, you start the clients. Start the custom-
ers first so that they can be notified immediately of any available videos. Open two
command windows to run two customers, Natalie and Xavier, and a third command
window to run the store. Once the store program starts, it asks you to enter the data
for a video. Provide the requested data, and both Xavier and Natalie should be noti-
fied of the video and asked whether they want to reserve it. Respond with n for Xavier
and y for Natalie. The store window should reflect the reservation request. Figure 8.9
shows screen captures that match this scenario.

Figure 8.8 The contents of the
sofaspuds.jar file consists of the
three classes that make up the
example application and the JNDI
properties file used to access JNDI.

214 CHAPTER 8 JBoss Messaging
Now that you have the messaging clients running, let’s expand the example to include
a message-driven bean (MDB), and look at how to configure an MDB.

8.3 Using message-driven beans
Session EJBs can easily participate as message producers but aren’t particularly suited
for acting as message consumers. There are several reasons why. First, consumers typi-
cally wait for messages to arrive, and waiting on a message is something you don’t want
a session bean to do. You want to release a session bean as soon as possible so that it
can go back into a pool. Only so many session beans are allocated in the pool; if all of
them are occupied waiting for messages, then no one else can make a request that
needs one of those session beans. The session bean can instead use the receive-
NoWait method of the MessageConsumer interface and return immediately whether or
not a message is available.

 You could have the session bean register to receive notification of messages. Such
notifications happen on a separate thread—another bad idea for a session bean because
it could find itself processing a client request at the same time it’s processing a message.
In addition, because the application server creates multiple session beans, which one
should register for messages? Or should they all? If only one is registered, what happens
if the application server deallocates that one due to reduced request traffic?

 For these reasons, the EJB 2.0 specification introduced a new type of EJB, the mes-
sage-driven bean (MDB). The MDB was designed to be a message consumer. You indi-
cate which queue or topic the MDB should subscribe to, and it processes the messages.
From the messaging system point of view, the MDB is another message consumer and
isn’t treated any differently from other consumers.

 We describe the business reason for adding an MDB to the example and show the
code for it. We follow that with packaging, deploying and running the updated exam-
ple, and describing configuration options.

Figure 8.9 Here you see the results of running the example messaging application. The store notifies
the customers that Casablanca is available for rental. Natalie wants to reserve a copy. Xavier doesn’t.
Notice that the store is notified of Natalie’s request.

215Using message-driven beans
8.3.1 Creating an MDB

Apparently, a top-secret government agency obtained a court order to monitor the
videos that Natalie is watching. This agency has developed an MDB that effectively
wiretaps the request topic, recording all of Natalie’s video requests. We obtained the
source code for this MDB, and it appears in listing 8.2.

package org.jbia.jms.sofaspuds;
import javax.ejb.*;
import javax.jms.*;
@MessageDriven(activationConfig={
 @ActivationConfigProperty
 (propertyName="destinationType",
 propertyValue="javax.jms.Topic"),
 @ActivationConfigProperty
 (propertyName="destination",
 propertyValue="topic/testDurableTopic"),
 @ActivationConfigProperty
 (propertyName="subscriptionDurability",
 propertyValue="Durable"),
 @ActivationConfigProperty
 (propertyName="messageSelector",
 propertyValue="SpudsCustomer = 'Natalie'")
})
public class WireTap implements MessageListener {
 public void onMessage(Message msg) {
 try {
 ObjectMessage objmsg = (ObjectMessage)msg;
 Video video = (Video)objmsg.getObject();
 System.out.println("Surveillance: perp=" +
 msg.getStringProperty("SpudsCustomer") +
 ", video=" + video);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The @MessageDriven annotation declares this class to be a message-driven bean B.
The bean takes a series of configuration properties to govern the handling of mes-
sages as follow:

■ The destinationType property declares the destination to be a topic C.
■ The destination property declares the JNDI name of the topic D.
■ A durable subscription is used to access the topic E.
■ Only reservation requests from Natalia are recorded F.

The WireTap class implements the MessageListener interface G, which requires the
onMessage method H. Note that, without the annotation, the class looks like any
other class declared as a message listener.

Listing 8.2 WireTap.java

B

C

D

E

F

G
H

I

J

1)

216 CHAPTER 8 JBoss Messaging
 When the MDB receives a message, it extracts the Video object from the message I.
It then prints the surveillance data J to the console. And like the other message
listeners we showed you before, the code is wrapped in a try-catch block because the
onMessage method can’t throw an exception 1).

 The example uses a variety of configuration properties, but many more are avail-
able to configure MDBs. The following tables describe those configuration properties.
Table 8.3 lists the properties defined by the EJB3 specification and provides the default
value if that option isn’t specified.

Table 8.4 contains the extended set of properties defined by JBoss AS and provides the
default value if that option isn’t specified.

Table 8.3 Standard MDB configuration properties

Property Default Description

destinationType javax.jms.Queue Identifies the destination as being javax.
jms.Queue or javax.jms.Topic.

subscriptionDurability NonDurable Identifies the subscription to be Durable or
NonDurable.

acknowledgementMode Auto-acknowledge Indicates if the EJB container should automatically
acknowledge the message as soon as the MDB
receives the message for processing (Auto-
acknowledge) , or if the EJB container can wait
until a later time to acknowledge the message, per-
haps batching up acknowledgements for several mes-
sages (Dups-ok-acknowledge). In the latter
case, the MDB must be written to handle possible
duplicates, by checking the JMSXDeliveryCount
message property, because the messaging service
could redeliver the message if it doesn’t receive
acknowledgement from the EJB container in time.

messageSelector null An expression that can be used to filter the mes-
sages that are sent to the MDB.

Table 8.4 Extended MDB configuration properties

Property Default Description

destination null JNDI name for the topic or queue.

clientId -generated- Used to set the clientId for the connection. See
javax.jms.Connection.setClientId() for
details.

subscriptionName -generated- The durable subscription name. See javax.jms.
Connection.createDurableConnection-
Consumer().

217Using message-driven beans
Many of the extended configuration properties overwrite the values provided in the
server/xxx/conf/standardjboss.xml file. Look for the commented-out <invoker-
proxy-binding> tag with the name message-driven-bean.

8.3.2 Packaging an MDB

Include both the messaging client JAR file and
the EJB3 JAR file in the class path when you com-
pile the MDB. After compiling, place the files in a
JAR file, as shown in figure 8.10. Note that we
include only the required files and none of the
other files, such as Store.class, for the exam-
ple application. Drop this file into the deploy
directory, and it’s ready to go.

 To try it out, bring up the store and cus-
tomer clients as you did before in section 8.2.2.
You should see that only Natalie’s video reservations are noted in the console log.

 As with other EJBs, MDBs can be configured using either annotations or a deploy-
ment descriptor. The example uses annotations, so let’s modify it to use a deployment
descriptor instead.

user null The account name used to determine access rights to
the destination. See javax.jms.Connection-
Factory.createConnection().

password null The password used to determine access rights to the
destination. See javax.jms.Connection-
Factory.createConnection().

maxMessages 1 The maximum number of messages that can be
assigned to a server session at one time. See
javax.jms.Connection.createDurable-
ConnectionConsumer().

minSession 1 The minimum number of MDBs to keep in the pool.

maxSession 15 The maximum number of MDBs to keep in the pool.

keepAlive 60000 The amount of time to wait, in milliseconds, before
removing an unused MDB from the pool.

reconnectInterval 10000 The amount of time to wait, in milliseconds, before
attempting to reconnect to the messaging server if the
messaging server goes away.

providerAdaptorJNDI java:/
DefaultJMSProvider

JNDI name of the JMS provider adapter that’s used to
create messaging resources.

Table 8.4 Extended MDB configuration properties (continued)

Property Default Description

Figure 8.10 The example MDB JAR
file contains two classes: the Video
class (the object passed in the
messages) and the WireTap class
(implements the message-driven EJB).

218 CHAPTER 8 JBoss Messaging
8.3.3 Using a descriptor file with an MDB

Modifying the WireTap to use a deployment descriptor instead of annotations requires
two changes. First, delete the entire @MessageDriven annotation along with the
accompanying configuration properties. Listing 8.3 shows the updated class.

package org.jbia.jms.sofaspuds;
import javax.ejb.*;
import javax.jms.*;
public class WireTap implements MessageListener {
 public void onMessage(Message msg) {
 <same contents as before, not shown to save space>
 }
}

Second, create a META-INF/ejb-jar.xml file to define the messaging properties. List-
ing 8.4 describes that file.

<?xml version="1.0"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
 version="3.0">
<enterprise-beans>
 <message-driven>
 <ejb-name>WireTap</ejb-name>
 <ejb-class>org.jbia.jms.sofaspuds.WireTap</ejb-class>
 <message-destination-type>

 ➥javax.jms.Topic</message-destination-type>
 <activation-config>
 <activation-config-property>
 <activation-config-property-name>

 ➥destinationType</activation-config-property-name>
 <activation-config-property-value>

 ➥javax.jms.Topic</activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>

 ➥destination</activation-config-property-name>
 <activation-config-property-value>

 ➥topic/testDurableTopic

 ➥</activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>

 ➥subscriptionDurability

 ➥</activation-config-property-name>
 <activation-config-property-value>

 ➥Durable</activation-config-property-value>

Listing 8.3 WireTap.java

Listing 8.4 The ejb-jar.xml file

Identifies MDB
declaration

B
Names MDBC Identifies

MDB class
D

E Indicates
topic use

Identifies topic
and properties

F

219Using message-driven POJOs
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>

 ➥messageSelector</activation-config-property-name>
 <activation-config-property-value>

 ➥SpudsCustomer = 'Natalie'

 ➥</activation-config-property-value>
 </activation-config-property>
 </activation-config>
 </message-driven>
</enterprise-beans>
</ejb-jar>

The <message-driven> node identifies this section of the file pertaining to message
beans B. You should name the EJB in case you need to reference it elsewhere C.
Identify the class that implements the EJB D, and indicate that the destination is a
topic E. The rest of the file sets the configuration properties F.

 The settings in the deployment descriptor override any annotations declared in
the class. For example, you can keep the class as is, with the annotation, and still pro-
vide the deployment descriptor. This way you can set up the class with a default behav-
ior and override that with the deployment descriptor. Most likely, you’d use
annotations for things that usually don’t change and the deployment descriptor for
things that might change. For the WireTap MDB, you could leave the destination-
Type, destination, and subscriptionDurability settings in the class, and place the
messageSelector in a descriptor file because that changes based on whose reserva-
tions are being monitored.

8.4 Using message-driven POJOs
Message-driven POJOs are what their name implies—POJOs that can be registered as
message consumers. Message-driven POJOs are specific to JBoss AS and aren’t part of
either the JMS or EJB specifications; you shouldn’t use them if you need your applica-
tion to be application server agnostic. Also, message-driven POJOs are supported by
the EJB container, meaning they can’t be used on a server configuration that doesn’t
support EJB.

 The owner of Sofa Spuds is interested in making as much money as possible (he
has his eye on a solid gold Humvee). He has decided to bill customers for videos as
soon as the customer requests the video. The bank provides a message-driven POJO to
accept credit card charges. We show you the bank’s message-driven POJO and the
changes to the Store class to act as the message sender.

8.4.1 Implementing a message-driven POJO consumer

To define a message-driven POJO, you need both an interface and a class that imple-
ments that interface. You might wonder why an interface is required, but you have to
wait until we discuss the sender. The interface for our example message-driven POJO
is shown in listing 8.5.

F Identifies topic
and properties

220 CHAPTER 8 JBoss Messaging
package org.jbia.jms.sofaspuds;
import org.jboss.ejb3.annotation.Producer;
@Producer
public interface ICredit {
 void charge(String customer, double amount);
}

The @Producer annotation identifies that this interface is used for a message-driven
POJO B. Note that this annotation is defined in the package org.jboss; this capabil-
ity is specific to JBoss AS. And now for a mystery: Why is the interface called Producer
and not Consumer? We get to that in a minute.

 The charge method defines the message. Not what you expected, is it? Typical
message-related methods take a single message object as an argument; here, there are
several arguments that are standard Java types. In fact, you can use any of the basic
data types and any classes that are serializable as arguments. This makes message-
driven POJOs closer in concept to asynchronous remote procedure calls (RPC), which
was one of the original purposes behind messaging.

 The message-drive POJO (which consumes the messages) implements the interface
and contains annotations to identify the message queue. The code for that class is in
listing 8.6.

package org.jbia.jms.sofaspuds;
import org.jboss.ejb3.annotation.Consumer;
import javax.ejb.*;
@Consumer(activationConfig={
 @ActivationConfigProperty
 (propertyName="destinationType",
 propertyValue="javax.jms.Queue")
 @ActivationConfigProperty
 (propertyName="destination",
 propertyValue="queue/testQueue")})
public class Credit implements ICredit {
 public void charge(String customer, double amount) {
 System.out.println("Charge to " + customer + " for " + amount);
 }
}

The message-driven POJO class implements the interface defined earlier D. The
@Consumer annotation B, which is specific to JBoss AS, identifies this class as a con-
sumer of messages. The @Consumer annotation uses the same @ActivationConfig-
Property annotations as used by an MDB to configure the message destination C. All
the same configuration properties supported by MDBs are supported for message-
driven POJOs.

 Notice the differences between this and the MDB. Although the message-driven
POJO implements an interface, it’s a business interface, not a framework interface, as
in the case of an MDB. You can easily unit test the message-driven POJO. Second, the

Listing 8.5 The ICredit interface

Listing 8.6 The Credit class

Identifies message-driven
POJO interface

B

Defines message

Identifies class as
message consumer

B

Identifies
message queue

C

Implements interfaceD

221Using message-driven POJOs
message consumer is coded as a typical RPC method, not as a typical message consume
method. The container handles the packaging and unpacking of the messaging data,
removing that chore from the business logic developer.

 If you’re thinking that the message sender probably also doesn’t look like a typical
messaging client, you’re correct.

8.4.2 Implementing a message-driven POJO producer

Recall that, for the example, the customer’s credit card is billed when a video request
is received. The only method that has to change is the Store.onMessage method. List-
ing 8.7 shows the additional code added to that class.

...
import javax.naming.*;
import org.jboss.ejb3.mdb.*;
public class Store implements MessageListener {
 ...
public void onMessage(Message msg) {
 ProducerManager mgr = null;
 try {
 ObjectMessage om = (ObjectMessage)msg;
 Video video = (Video)om.getObject();
 String customer = om.getStringProperty("SpudsCustomer");
 System.out.println("Reservation request:");
 System.out.println("\tcustomer: " + customer);
 System.out.println("\tvideo : " + video);
 InitialContext ctx = new InitialContext();
 ICredit card =
 (ICredit) ctx.lookup(ICredit.class.getName());
 ProducerObject prod = (ProducerObject) card;
 mgr = prod.getProducerManager();
 mgr.connect();
 card.charge(customer, 4.95);
 } catch (Exception e) {e.printStackTrace();
 } finally {
 try {
 if (mgr != null) mgr.close();
 } catch (javax.jms.JMSException je) {je.printStackTrace();}
 }
 }
 ...
}

A few more packages are imported B because you use classes from them. As with a
normal message client, you have to look something up in JNDI; but instead of look-
ing up the connection factory, you look up a proxy object that implements the busi-
ness interface, ICredit C. In addition, this proxy implements the ProducerObject
interface, which is used to establish the messaging connection D. It acts as both a
connection factory and a connection. The call to the connect method establishes the
connection. Behind the scenes, the ProducerObject looks up the destination

Listing 8.7 The updated Store class

B

C

D

E

F

222 CHAPTER 8 JBoss Messaging
defined for the message. Now you know why the ICredit interface used the
Producer annotation—because it’s used by the message producer to send messages.
That mystery is solved.

 Sending a message looks like a normal procedure call, not like a messaging call E.
The ProducerObject packages the content in a form suitable for messaging and
passes it off to the messaging server, which places it in the queue. Finally, the messag-
ing connection is closed F.

8.4.3 Packaging a message-driven POJO

Because you’ve modified the Store class, you have to
package it again; refer back to section 8.2.2 for instruc-
tions. You must include the ICredit class in the JAR file
for the store. You can package the message-driven POJO
in a JAR file, credit.jar, as shown in figure 8.11. Note that
only the required files—the interface and the message-
driven POJO—are listed. Drop this file into the deploy
directory, and it’s ready to go.

 To try it out, bring up the store and customer clients
as you did in section 8.2.2. You can see each customer
being charged for the video rental at the time the customer makes a reservation. The
credit card charge message appears in the console log. Now that we’ve explored various
messaging clients, let’s turn our attention to various messaging configuration topics.

8.5 Configuring JBoss Messaging
We cover configuration topics such as defining new destinations, setting up a data
source, securing messages, and setting up various communications mechanisms. We
start with the default configuration—which is what we used for the video exam-
ple—and then show how to change the configuration and update the video example
to match the configuration changes.

 Let’s first describe the configuration changes that we intend to make. The changes
are as follow:

■ Replace the two built-in topics with application-specific topics.
■ Add authorization and access control to the topics.
■ Use the PostgreSQL database as the data store for the messages and as the loca-

tion for the authentication information. You can use different databases for
authentication and the messaging store; they don’t have to be the same.

These changes show up in many of the same configuration files. Rather than perform-
ing the changes one at a time, we cover all three at once. Once these changes are
made, we show how to secure the message text using encryption as a separate exer-
cise later.

 We cover the various descriptor file changes first, and afterwards show the changes
to the example messaging application. We tackle the descriptor changes in reverse

Figure 8.11 The message-
driven POJO JAR file contains
the ICredit interface and the
Credit class that implements
the interface.

223Configuring JBoss Messaging
order, ending with the destination configuration because it references the security
changes, which reference the data source changes.

8.5.1 Configuring a data source

The messaging service stores all messages in a database before delivering them so that
it can guarantee delivery. By default, it uses the Hypersonic database that ships with
the application server. Although Hypersonic is adequate for development purposes, it
shouldn’t be used in production. If the server crashes, all messages could be
lost—undelivered—violating the guaranteed delivery contract. It also can’t handle a
high volume of messages.

 Configuring the messaging service to use another database is easy. First, you need
to select a database and configure it by defining a *-ds.xml file.

 For this example, you use the PostgreSQL database, which we assume you’ve
already installed. You need to establish a database for the messaging service and create
a database user who has access to that database. If you’re following along at Borders
(or wherever you’ve lugged your laptop), run psql and enter the following lines (you
might want to use a more secure username and password):

CREATE USER video WITH ENCRYPTED PASSWORD 'videopw';
CREATE DATABASE videodb WITH OWNER = video ENCODING = 'UTF8';

Copy the JAR file that contains the PostgreSQL JDBC driver to the server/xxx/lib
directory.

 Create a data source descriptor file using server/xxx/docs/examples/jca/post-
gres-ds.xml as an example. The descriptor should look similar to the one shown in list-
ing 8.8. Deploy this new descriptor to JBoss AS.

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
 <local-tx-datasource>
 <jndi-name>jdbc/VideoDS</jndi-name>
 <connection-url>

 ➥jdbc:postgresql://localhost:5432/videodb

 ➥</connection-url>
 <driver-class>org.postgresql.Driver</driver-class>
 <user-name>video</user-name>
 <password>videopw</password>
 ...
 </local-tx-datasource>
</datasources>

The JNDI name B is important and is referenced from the postgres-persistence-
service.xml file, which we cover next. As you know, the database name C must match
the database created earlier—ditto for the username and password D.

 Finally, modify the persistence service descriptor, postgresql-persistence-
service.xml. You can find this file in the docs/examples/jms directory. This descriptor
contains the information necessary to use the database as the persistence store for the

Listing 8.8 video-ds.xml excerpt

B

C

D

224 CHAPTER 8 JBoss Messaging
messaging service. Listing 8.9 shows only the portions of this file that you need to
change and enough lines to maintain context.

<server>
 <mbean name="jboss.messaging:service=PersistenceManager" ...>
 <depends>jboss.jca:service=DataSourceBinding,name=jdbc/VideoDS
 </depends>
 <attribute name="DataSource">java:/jdbc/VideoDS</attribute>
 ...
 </mbean>
 <mbean name="jboss.messaging:service=PostOffice" ...>
 <depends>jboss.jca:service=DataSourceBinding,name=jdbc/VideoDS
 </depends>
 <attribute name="DataSource">java:/jdbc/VideoDS</attribute>
 <attribute name="Clustered">false</attribute>
 <!-- depends optional-attribute-name="ChannelFactoryName">

 ➥ jboss.jgroups:service=ChannelFactory</depends -->
 ...
 </mbean>
 </mbean>
 <mbean name="jboss.messaging:service=JMSUserManager" ...>
 <depends>jboss.jca:service=DataSourceBinding,name=jdbc/VideoDS
 </depends>
 <attribute name="DataSource">java:/jdbc/VideoDS</attribute>
 ...
 </mbean>
</server>

Note that the data source name appears several times, both as a JNDI name and as part
of the name of the MBean that represents the data source. Also, set the Clustered attri-
bute to false B and comment out the dependency on the ChannelFactory C because
you’re not running this example in a clustered application server. Optionally, you could
remove all the attributes after the Clustered attribute to the end of the MBean because
all those attributes are specific to clustering and you won’t need them for this example.
Once the file is changed, it goes into the server/xxx/deploy/messaging directory. As a
final step, remove the hsqldb-peristence-service.xml file from that same directory.

8.5.2 Configuring access control

We cover security in detail in chapter 4, so we don’t repeat that here. In the interest of
completeness, we describe all the changes required, showing descriptor files and other
pertinent data along the way.
CONFIGURING ACCOUNTS AND ROLES

You need two roles: one for the store
and one for the customers. Each cus-
tomer has his or her own account, and
the store has an account. Figure 8.12
illustrates these accounts and roles.

 We set the passwords for the cus-
tomers to the same values as their

Listing 8.9 postgresql-persistence-service.xml

Identifies data source B

C

vstore vcust

natalie/natalie

xavier/xaviersofa/spuds
roles

name password
accounts

Figure 8.12 The example security configuration
uses two roles: vstore and vcustomer. There’s only
one account for the vstore role, but each customer
account is in the vcust role.

225Configuring JBoss Messaging
usernames, mainly to minimize the changes that are made to the example applica-
tion; you should use a more secure password. Note that, when the store gets a new cus-
tomer, a new account must be created and added to the vcust role.

 The roles and accounts are stored in the database, in the VRole and VUser tables
respectively. While logged into the videodb database—and using the video user and
password set earlier—use psql to create the following SQL statements that generate
the tables:

CREATE TABLE VUser (
 vname VARCHAR(30) NOT NULL,
 vpassword VARCHAR(250) NOT NULL,
 PRIMARY KEY(vname));
CREATE TABLE VRole (
 vname VARCHAR(30) NOT NULL,
 vrole VARCHAR(30) NOT NULL,
 PRIMARY KEY(vname));

And the psql statements that populate the tables:

INSERT INTO VUser (vname, vpassword) VALUES ('Xavier' , 'Xavier');
INSERT INTO VUser (vname, vpassword) VALUES ('Natalie', 'Natalie');
INSERT INTO VUser (vname, vpassword) VALUES ('sofa' , 'spuds');
INSERT INTO VRole (vname, vrole) VALUES ('Xavier' , 'vcust');
INSERT INTO VRole (vname, vrole) VALUES ('Natalie', 'vcust');
INSERT INTO VRole (vname, vrole) VALUES ('sofa' , 'vstore');

Populating the database with the usernames and passwords is only part of the security
configuration; you also need to tell the application server to look in the database for
that information. For that, you need a login module, which we cover next.
CONFIGURING THE LOGIN MODULE

The messaging service uses the DatabaseServerLoginModule, which you’ll also use,
except you’ll define another security domain and not use the domain named messaging.
To do this, add a new security policy, video-realm. Make the changes in the server/xxx/
conf/login-config.xml file, as shown in listing 8.10.

<policy>
 . . .
 <application-policy name="video-realm">
 <authentication>
 <login-module
 code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
 flag="required">
 <module-option name="dsJndiName">
 java:/jdbc/VideoDS</module-option>
 <module-option name="principalsQuery">

 ➥SELECT vpassword FROM VUser WHERE vname=?

 ➥</module-option>
 <module-option name="rolesQuery">

 ➥SELECT vrole, 'Roles' FROM VRole WHERE vname=?

 ➥</module-option>
 </login-module>

Listing 8.10 New security policy in login-config.xml

B

C

D

E

226 CHAPTER 8 JBoss Messaging
 </authentication>
 </application-policy>
</policy>

The policy name B is referenced later in the messaging-service.xml file, and the data
source name C comes from the *-ds.xml file defined earlier. The principlesQuery
option D and rolesQuery option E reference the tables and columns that were cre-
ated earlier.
CONFIGURING THE MESSAGING SERVICE

The final step regarding security is to configure the messaging service to use this login
module. This is done in server/xxx/deploy/messaging/messaging-jboss-beans.xml,
which contains two entries related to security. Listing 8.11 shows an excerpt from the
updated file.

<deployment ...>
 <bean name="SecurityStore" ...>
 <property name="defaultSecurityConfig">
 <![CDATA[<security>
 <role name="guest" read="true"
 write="true" create="true"/>
 </security>]]>
 </property>
 <property name="securityDomain">video-realm</property>
 ...
 </bean>
 ...
</deployment>

We reference the new login module C, but we keep the DefaultSecurityConfig as
is B. This entry defines the default role name and access control if no account infor-
mation is provided by the client. Unlike many other services, messaging has access
control turned on by default, but it also provides default access control for users that
don’t log on. As you can see from this example, the default role is guest and has a
variety of privileges, as noted in table 8.5.

Listing 8.11 messaging-service.xml (excerpt)

Table 8.5 Destination access modes

Access mode Description

read If true, then users in that role can receive messages from the destination.

write If true, then users in that role can send messages to that destination.

create If true, then users in that role can establish a durable topic subscription. For a dura-
ble subscription, the messaging server maintains the messages in the topic until all
registered durable subscribers have received a copy of the message. A durable sub-
scriber can exit and return later to receive any messages that have appeared since the
last time it was run. This access mode is applicable only to topics and is based on the
subscriber, not the publisher.

Identifies default
access control

B

Identifies
security
domain

C

227Configuring JBoss Messaging
This is why the earlier example worked: All clients were given default privileges,
including read and write access to all destinations. Now you also know where to go to
restrict access to messaging users who don’t authenticate.

8.5.3 Configuring destinations

The default destinations that come with the application server are defined in the file
server/xxx/deploy/messaging/destinations-service.xml. As you can tell by the *-ser-
vice.xml suffix, this descriptor contains MBeans that define services. If you look in the
file, a series of MBeans is defined; each MBean defines a destination. To create your
own destinations, create a *-service.xml file and populate it with the desired MBean
definitions for your destinations. Once you have the file, you can either place the file
in the deploy directory or add it to your archive file, such as an EAR file, referencing it
using the <module> and <service> tags in the jboss-app.xml file.

 You need two topics: one for the video notification and the other for the reserva-
tion request. Give the vstore role the right to create a durable subscription so that
customers can find out about videos that come in even when they’re not online. As
soon as they connect again, they’re informed of said videos. The video-service.xml file
containing the destinations is shown in listing 8.12.

<?xml version="1.0" encoding="UTF-8"?>
<server>
 <mbean
 code="org.jboss.jms.server.destination.TopicService"
 name=" jbia.jms:service=Topic,name=Notification"
 xmbean-dd="xmdesc/Topic-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">

 ➥jboss.messaging:service=ServerPeer</depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 <attribute name="SecurityConfig">
 <security>
 <role name="vstore" write="true"/>
 <role name="vcust" read="true" create="true"/>
 </security>
 </attribute>
 </mbean>
 <mbean
 code="org.jboss.jms.server.destination.TopicService"
 name="jbia.jms:service=Topic,name=Reservation"
 xmbean-dd="xmdesc/Topic-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">

 ➥jboss.messaging:service=ServerPeer</depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 <attribute name="SecurityConfig">
 <security>
 <role name="vstore" read="true"/>
 <role name="vcust" write="true"/>
 </security>

Listing 8.12 The video-service.xml file

B
C

D

E
F

G

228 CHAPTER 8 JBoss Messaging
 </attribute>
 </mbean>
</server>

Declaring a destination, whether a queue or a topic, is as simple as declaring an MBean.
The MBean for a topic is handled by the org.jboss.jms.server.destination.
TopicService class (B and E). If you want to declare a queue, use the org.jboss.
jms.server.destination.QueueService class instead.

 Note that the MBean name (C and F) doesn’t require any particular pattern,
except for the service=Topic part (which would be service=Queue for a queue); the
domain name doesn’t have to be jboss.messaging.destination, which is used for all
the example destinations. The name=Notification part C identifies part of the JNDI
name for the topic; the full name is topic/Notification. Similarly, if this were a
queue, the full JNDI name would be queue/Notification.

 We set up the video notification topic C so that the store sends notifications and the
customers obtain durable subscriptions D. Conversely, for the reservation topic F, the
customers send requests, and the store reads them G. These are the minimum access
rights required for the application. See table 8.5 for descriptions of access modes.

8.5.4 Updating the application

The Store class needs to reference the new destinations and use the correct account.
Listing 8.13 provides excerpts from the updated Store class with the changes noted.

...
public class Store implements MessageListener {
 ...
 private void run () throws Exception {
 ...
 Topic notify = (Topic)initial.lookup("topic/Notification");
 Topic request = (Topic)initial.lookup("topic/Reservation");
 connection = cf.createConnection("sofa", "spuds");
 ...
 }
 ...
}

You change the names of the topics B and log in with the appropriate username and
password C. The changes to the customer class are similar, as shown in listing 8.14.

...
public class Customer {
 ...
 private void run (String customer) throws Exception {
 ...
 Topic notify = (Topic)initial.lookup("topic/Notification");
 Topic request = (Topic)initial.lookup("topic/Reservation");
 Connection connection =

Listing 8.13 Store.java with authentication changes

Listing 8.14 Customer.java with authentication changes

B Defines
new
topic
names

Logs in
using username C

Defines new
topic names

229Configuring JBoss Messaging
 cf.createConnection(customer, customer);
 ...
 }
 ...
}

The customer name is used both as the login name and the password B. As we indi-
cated earlier, this is done mainly to make the example simple. You should use more
secure passwords.

 The previous sections listed changes to a variety of configuration files. If you got
lost in the shuffling of files, table 8.6 offers a recap.

With the code changes in place, it’s time to try out the example to see if the configura-
tion changes worked.

8.5.5 Running the modified example

Start the application server and try the example program again, as shown in sec-
tion 8.2.2. It should work the same way as before with the following additional features:

■ Durable subscriptions —After running the customer the first time, bring the cus-
tomer application down; then, from the store application, generate a few more
video notifications. When you run the customer again, the customer is notified
of all the videos.

■ Persistent storage of messages —If the server crashes, you’re notified of new videos
available for rental after the server restarts.

Table 8.6 Files involved in configuring messaging

File usage Location under jboss_home/server/default Comment

Security policy
definition

./conf/login-conf.xml Add new policy or mod-
ify existing one

Messaging service
configuration

./deploy/messaging/messaging-jboss-beans.xml References new secu-
rity realm and defines
default access rights

Destination
configuration

./deploy/video-service.xml Defines the destina-
tions and their access
rights

PostgreSQL JDBC
driver

./lib/postgresql-8.2-504.jdbc3.jar Name varies—obtain
from your JDBC driver
vendor

Data source
descriptor

./deploy/video-ds.xml Create this file

Persistence
service descriptor
for PostgreSQL

./deploy/messaging/postgresql-persistence-service.xml Copy from docs/
examples/jms

Persistence
service descriptor
for Hypersonic

./deploy/messaging/hsqldb-persistence-service.xml Delete this file

Logs in using
usernameB

230 CHAPTER 8 JBoss Messaging
But one thing doesn’t work any more. The security changes disabled the WireTap MDB
because we changed the topic on which the reservations are published, and added
authorization to that topic. Although privacy advocates applaud this move, it could get
Sofa Spuds slapped with a contempt-of-court citation. So, reluctantly, let’s make the
necessary changes to the WireTap source code.

8.5.6 Updating the MDB

To conform to these configuration changes, you need to define the new topic name, the
username, and the password—all of which you can do using annotations. Listing 8.15
shows the full annotation with the updated configuration properties. The rest of the
WireTap class is the same as from section 8.3.1.

@MessageDriven(activationConfig={
 @ActivationConfigProperty
 (propertyName="destinationType",propertyValue="javax.jms.Topic"),
 @ActivationConfigProperty
 (propertyName="destination",
 propertyValue="topic/Reservation"),
 @ActivationConfigProperty
 (propertyName="subscriptionDurability", propertyValue="Durable"),
 @ActivationConfigProperty
 (propertyName="messageSelector",
 propertyValue="SpudsCustomer = 'natalie'"),
 @ActivationConfigProperty
 (propertyName="user", propertyValue="sofa"),
 @ActivationConfigProperty
 (propertyName="password", propertyValue="spuds")
})

By the way, the same configuration properties apply to the message-driven POJOs; if we
secured the queue used by the Credit POJO, we could have provided similar proper-
ties as those listed.

 You can choose to modify the META-INF/ejb-jar.xml descriptor file instead of the
annotations. We leave that as an exercise for you.

 With this final change, all is as it was before we decided to create our own topics,
secure the topics, and switch databases.

8.5.7 Configuring secure message transport

Besides access control, the other security concern is ensuring that message data isn’t
compromised by someone viewing the packets on the network. You can encrypt the
data using SSL or a similar mechanism. In this section, we show you how.

 Sofa Spuds wants to guarantee the privacy of its customers’ viewing habits. After
all, consider your humiliation if it became known that you rented Gigli. Three times.
All video notifications and reservation requests need to be transported using SSL. You
need to first generate a key and then configure the server and client to use the keys
and pass the data using SSL.

Listing 8.15 Update annotations for the example MDB

Sets topic name

Sets user id

Sets password

231Configuring JBoss Messaging
GENERATING THE KEY

We cover public and private key pairs and certificates in chapter 4; therefore, we don’t
repeat that here. But to make the example complete, here are the steps to create the
necessary files. First, the store needs to create a key and extract the public key. This is
done in two steps.

keytool -genkey -alias jbiakey -keyalg RSA -validity 365

➥ -keystore server.keystore
keytool -export -alias jbiakey -keystore server.keystore

➥ -file jbiapublic.key

The application server uses a keystore named server.keystore. The customers
receive a public key (or certificate) named jbiapublic.key. The customer takes the
public key and imports it into his truststore, named client.keystore, using keytool
as follows:

keytool -import -alias jbiakey -keystore client.keystore

➥ -file jbiapublic.key

Note that you need to remember the passwords you used to create the keystore and
truststore for later use.
CONFIGURING THE SERVER

Now that you have a key in a keystore, you can configure the messaging server to use that
keystore. The messaging service uses JBoss Remoting to pass messages between systems.
A remoting service configuration file for using SSL is provided at docs/examples/jms/
remoting-sslbisocket-service.xml. Copy this file to the server/xxx/default/deploy/
messaging directory.

 The remoting-sslbisocket-service.xml file comes with an example SSL socket builder
MBean. You need to modify the MBean to use the keystore and passwords you created
earlier. Listing 8.16 shows the changes required.

<server>
. . .
 <mbean
 name="jboss. messaging:service=SocketBuilder,type=SSL"
 ...>
 <attribute name="KeyStoreURL">
 ${jboss.server.config.url}server.keystore</attribute>
 <attribute name="KeyStorePassword">videospuds

➥ </attribute>
 <attribute name="KeyPassword">videospuds</attribute>
 ...
 </mbean>
</server>

The KeyStoreURL attribute B uses a system property to identify the server/xxx/conf
directory so that you can place the keystore in the same directory as the rest of the gen-
eral configuration files for the server. The next two entries C identify the passwords
used while creating the keystore and the public/private key pair.

Listing 8.16 The SSL socket builder MBean

B

C

232 CHAPTER 8 JBoss Messaging
 The connector MBean in the remoting-sslbisocket-service.xml file is named
jboss.messaging:service=Connector,transport=sslbisocket, which is different
from the name used for the connector MBean in the remoting-bisocket-service.xml
file. Two other configuration files reference the connector MBean; you must change
both files to make use of the SSL-enabled connector. You must add a dependency to
the connector MBean in the server/xxx/deploy/messaging/messaging-service.xml
file, as shown in listing 8.17.

<server>
 . . .
 <mbean name="jboss.messaging:service=ServerPeer" ...>
 <depends>

➥ jboss.messaging:service=Connector,transport=bisocket</depends>
 <depends>

➥ jboss.messaging:service=Connector,transport=sslbisocket</depends>
 </mbean>
</server>

Notice that this file references both the SSL-enabled connector and the regular con-
nector. You can require some clients use SSL while others don’t. Whether a client
must use SSL depends on the connection factory, which is configured in the server/
xxx/deploy/messaging/connection-factories-service.xml file. Listing 8.18 shows the
change required in that file for this example.

<server>
 <mbean name="jboss.messaging.connectionfactory:

➥ service=ConnectionFactory" ...>
 ...
 <depends optional-attribute-name="Connector">

➥ jboss.messaging:service=Connector,transport=sslbisocket</depends>
 ...
 </mbean>
 . . .
</server>

Unlike the server peer, which can depend on multiple connectors, the connection fac-
tory can depend on only a single connector. Any client using this connection factory
must use SSL to access the messaging service. Although it isn’t shown in this listing, a
connection factory has a JNDIBindings attribute that can be used to specify its names.
You can declare multiple connection factories, using a different name for each, and
each can use a different connector. The client then chooses the appropriate connec-
tion factory to use either an SSL or an unencrypted transport.
CONFIGURING THE CLIENT

Configuring the client is simple—you have to specify the following system properties
when you run the client:

Listing 8.17 Adding a dependency on the SSL-enabled connector MBean

Listing 8.18 Setting the connection factory to use the SSL bisocket

233Summary
-Djavax.net.ssl.trustStore=

 ➥src/main/keystore/client.keystore
-Djavax.net.ssl.trustStorePassword=clientpwd

The first line identifies the location of the truststore file. The second is the password
for that truststore.
RECAPPING THE CHANGES

Once again, we touched on several files. Some of them appear in the build environ-
ment and others in the application server directories. Table 8.7 lists the files that were
changed in each location.

One final note: Make sure the application server isn’t running when you change the
files. Once the changes are made, bring the application server up and run the clients
as you did in section 8.2.2. The video notices and reservation requests should show up
as they did before, but this time the messages are encrypted so that anyone monitor-
ing the network packets doesn’t know that you’re once again reserving Gigli.

8.6 Summary
In this chapter, you learned about messaging systems in general, including a brief his-
tory of messaging and how it led to the JMS specification. Then you learned about JMS,
the interfaces it defines, and how JBoss Messaging implements the JMS specification.

 You then developed an example application (something a little more complex
than a simple Hello World! application) that you used throughout the chapter. The
application started small, consisting of two messaging clients, a producer and a con-
sumer, and grew with the addition of another client, an MDB, and a final client imple-
mented as a message-driven POJO. Initially, we had you rely on the default
configuration as much as possible, showing you only the necessary configuration
options, such as those required for the MDB.

Table 8.7 Files used for configuring messaging to use an SSL transport

File usage Location Comment

Server
keystore

server/xxx/conf/server.keystore Keystore used by the messaging server.

Remoting
configuration

docs/examples/jms/
remoting-sslbisocket-service.xml

Configures remoting to use SSL. Copied to server/xxx/
deploy/messaging.

Connection
factory

server/xxx/deploy/messaging/
connection-factories-service.xml

Replaces dependency to reference SSL bisocket
MBean.

Server peer server/xxx/deploy/messaging/
messaging-service.xml

Adds dependency on SSL bisocket MBean.

Client
keystore

client.keystore Truststore used by both the store and customer
clients.

Run scripts *.bat, *.sh If you have a script that runs the clients, add the
system properties to the JVM command line.

234 CHAPTER 8 JBoss Messaging
 Once the example was well established, we turned your attention toward a specific
set of configuration options. We showed you how to use a database for message stor-
age, how to define your own destinations, and how to configure authentication and
authorization for those destinations. As a bonus, you used the database to store the
authentication information. Finally, you changed the transport mechanism to use an
SSL transport so that messages were encrypted when sent over the wire.

 As with many of the other topics covered in this book, we’ve barely covered the sur-
face of the capabilities of JMS. We’ve focused on configuring and managing JBoss Mes-
saging. Armed with knowledge of JMS and the material covered in this chapter, you
should be comfortable with developing applications that make use of messaging and
with configuring JBoss Messaging to provide a robust, scalable, and high-performance
messaging system.

8.7 References
The JSR-914 specification—http://jcp.org/en/jsr/detail?id=914
Monson-Haefel and Chappell’s Java Messaging Service—http://www.oreilly.com/catalog/javmesser/
JBoss Messaging Documentation Library—http://www.jboss.org/jbossmessaging/docs/

http://jcp.org/en/jsr/detail?id=914
http://www.oreilly.com/catalog/javmesser/
http://www.jboss.org/jbossmessaging/docs/

Configuring Web Services
It was August of 2000 in Orlando, Florida. I (Peter) recall sitting in a frigid conference
room (the air conditioning was on high to combat the sweltering temperature out-
side) at the Professional Developer’s Conference (PDC) when Microsoft rolled out
their vision of the future complete with the .NET Framework and a thing called Web
Services. At the time, they didn’t have Visual Studio completely working with Web Ser-
vices. When they did roll out the beta version of Visual Studio .NET, you could create
a simple echoing web service with a few mouse clicks. The annotation capabilities in
the .NET Framework made creating Web Services simple; the tools and the Frame-
work handled the glue code that made it all possible.

 The next March I attended JavaOne in San Francisco. Almost every presenta-
tion mentioned the new hot topic: Web Services. Many of the presenters pointed

This chapter covers
■ Understanding Web Services
■ Developing a simple web service
■ Developing web service clients
■ Exploring JBoss Web Service-specific annotations
■ Securing a web service
■ Encrypting SOAP messages
235

236 CHAPTER 9 Configuring Web Services
out that EJBs, specifically stateless session beans, were a natural fit for Web Services
because they already supplied a similar capability within distributed applications.

 In addition, Sun Microsystems published a document that stated how a stateless
session bean could be converted into a web service endpoint. This process consisted
of around a dozen steps, running a wide variety of tools and performing a wide variety
of configuration steps, and only worked with Sun’s application server. Needless to say,
I never got my EJB-based web service working.

 Development of Java-based Web Services has come a long way since then. The
annotation support introduced in Java SE 5.0, and embraced by a wide variety of Java
technologies, makes creating and consuming Web Services in Java as easy as in the
.NET Framework.

 In this chapter, we describe Web Services and present a simple web service example,
showing how to develop and deploy that web service within JBoss AS. We focus on Web
Services defined using the Java API for XML-based Web Services (JAX-WS) as delineated
in JSR-181, implemented by JBoss Web Services 3.0, and provided in JBoss Application
Server 5.0. If you’re interested in the J2EE 1.4-compliant Web Services (JSR-109), see
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-RPC_User_Guide, where this
topic is well documented. After the example, we present various configuration topics
such as describing web service annotation, securing a web service, and encrypting web
service messages.

 If you’re already familiar with Web Services or only want to learn how to configure
Web Services within JBossWS, you can skip to section 9.3. If you’re an administrator,
you might want to skip to section 9.4 and get right into the security configuration.

9.1 Understanding Web Services
What is a web service? A cynic might say that it’s nothing more than remote method
invocation (RMI) performed over HTTP using a text-based (an XML document in this
case) transport mechanism. And the cynic would be right. Web Services aren’t neces-
sarily a revolution but do represent an evolutionary step towards interoperability of
heterogeneous systems.

 There are two key concepts to Web Services. First, if two (or more) parties agree on
the format for a certain type of data, then they can exchange data. For example, if
hospitals and doctors agree on the layout of patient data, then a doctor could easily
transfer information about a patient to the hospital where the patient is scheduled for
surgery. Various industry groups have defined such data layouts for data of interest to
their industries. Using XML as the basic layout for such data has increased the chances
that such vertical industry data layouts will be developed and accepted.

 Second, this data, which is software readable, can be transmitted over a protocol
that can get through corporate firewalls. Performing standard Remote Method Invo-
cation (RMI) between companies isn’t usually possible because the firewalls block the
ports used for RMI. But HTTP ports 80 and 443 are typically opened in firewalls to
allow customers and other users to access a company’s web site. Web servers then
become responsible, not only for human-generated traffic to service web pages, but
also for application-generated traffic in the form of Web Services.

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-RPC_User_Guide

237Understanding Web Services
9.1.1 Understanding web service terminology

As with other technologies, Web Services
have their own jargon and set of mnemonics
that you have to learn. Although we don’t
provide an exhaustive list, we do want to
highlight a few of the terms that you’ll
encounter in this chapter. Figure 9.1 illus-
trates some of the relevant terminology for
Web Services.

 A web service is a collection of endpoints.
Each endpoint is implemented in Java as a
class. An endpoint can contain one or more
web methods. You can also use an interface to
define an endpoint and use a class to imple-
ment that endpoint. The endpoint interface
is always used on the client side to construct
a proxy that can marshal the arguments to the web method and unmarshal the result.

 The Web Services Description Language (WSDL) file is an XML document that
describes the web service. Although you can create a WSDL from scratch to define
your web service and then generate the necessary stubs from it, it’s usually easier to
define the web service in terms of the endpoint written in Java and generate the WSDL
from that. We present both mechanisms in this chapter.

 The Universal Description, Discovery, and Integration (UDDI) registry is a mecha-
nism used to publish Web Services. Think of it as a phone book with the WSDL as a
phone number. If you know the phone number (WSDL), you can make the call
directly. If you don’t know the phone number, you can look it up in the phone book
(UDDI) and then make the call.

 We don’t cover UDDI usage in this book because the subject of Web Services is
much bigger than what can be covered easily in a single chapter. This chapter presents
a simple introduction to Web Services and highlights various configuration topics
when using JBossWS.

9.1.2 Understanding SOAP binding styles

SOAP is a protocol that enables the exchange of data between heterogeneous systems.
It provides two different SOAP binding styles—document and Remote Procedure Call
(RPC)—to pass data to a web method. In the RPC style, clients typically pass numerous
parameters to a web method, and those parameters typically use simple data types
such as strings and integers. Such web services tend to be chatty, or fine grained, in
that the client calls on the service frequently to perform a single task.

 The document style of web services tends to be coarse grained; the client packages
up all the information into a single object, which is then passed to the web method. The
web method has all the necessary information to perform the task. In many cases, doc-
ument-style calls tend to be asynchronous; the client makes the call and then goes off

Client
application

Endpoint

Web method

Web method

Endpoint

Web method

Web method

Web service
request

response

WSDL

UDDI

defines

locates

lo
ok
s
up
W
S
D
Ls

gets
metadata

Figure 9.1 This figure illustrates Web Services
terminology, showing how the client relates to
the server and how Web Services are
constructed within the server.

238 CHAPTER 9 Configuring Web Services
to do other things. The client either checks later to see if there was a response to the call
or registers to be notified when the response comes in. Asynchronous, document-style
calls are preferred when using Web Services between companies.

 Now that you have a basic understanding of Web Services, let’s look at a simple web
service, which we use as an example for the rest of the chapter when discussing vari-
ous configuration topics.

9.2 Developing a web service
The example web service returns the sales tax for a purchase based on the customer’s
state. You input the two-character postal state code (such as CA for California), and
the service returns the sales tax rate. (Don’t we wish it were that easy! We don’t know
about other states, but in California, each county and, sometimes, even each city has
its own sales tax rate. We could expand the service to also require the postal ZIP code,
which would help pinpoint the exact sales tax rate. But to keep the example simple,
we assume that sales tax rates are also simple, with one per state.)

 Once we’ve shown how to code the web service, we then show how to deploy it and
how to write clients to access it. Yes, we mean clients, as in plural. Because the biggest sell-
ing point of Web Services is interoperability among heterogeneous systems, you’ll find
that people who use technologies other than Java will want to access your web services.
Therefore, we show you how to write clients in Java and in C# for the web service.

9.2.1 Coding the web service

There are two approaches to developing a web service, as follow:

■ The top-down approach—You first develop the WSDL and use a utility, such as the
wsconsume utility supplied by JBossWS, to generate the necessary glue code and
stubs. You then fill in the code for the business logic in the stub classes. This
approach works best when you’re collaborating with various other entities to
define the Web Services because the WSDL becomes the contract between
those involved.

■ The bottom-up approach—You code the web service first and then generate the
WSDL from the web service. You can generate the WSDL using a utility, such as
the wsprovide utility supplied by JBossWS, or you can package the web service
and deploy it. The Web Services deployer will automatically generate the WSDL.
This approach works best if you’re defining a web service that you’d like others
to use and there’s no preexisting WSDL.

For this example, we use the bottom-up approach. Once you generate the WSDL, we
briefly show how to use the WSDL for the top-down approach.

 Listing 9.1 contains the code for the web service.

package org.jbia.ws;
import java.util.HashMap;
import javax.jws.*;
@WebService

Listing 9.1 A simple web service

Imports web
service package

B

239Developing a web service
public class SalesTax {
 private HashMap<String, Double> tax;
 public SalesTax() {init();}
 public void init() {
 tax = new HashMap<String,Double>();
 tax.put("CA", 7.75);
 tax.put("NH", 0.0);
 }
 @WebMethod
 public double getRate(String state) {
 Double rate = tax.get(state);
 if (rate == null) rate = -1.0;
 return rate;
 }
}

Notice the annotations, @WebService B and @WebMethod D, which define the web
service and what methods it supports. This web service is based on a POJO, and not an
EJB, but you could have as easily added these annotations to a stateless session bean.
We choose to use a POJO to keep the example simple.

 In a real application, the code that initializes the tax rate hash table C would be
loaded from a database, but (again, to keep the example simple) we initialize it with a
few hard-coded values. Although we could put in values for all 50 states, that would
lengthen the example without adding anything to the discussion at hand.

9.2.2 Packaging the web service

You need to package the web service as a web application. Before you can do that, you
need to create a web.xml file declaring the web service class as a servlet. The web.xml
file is shown in listing 9.2.

<web-app>
 <servlet>
 <servlet-name>SalesTax</servlet-name>
 <servlet-class>org.jbia.ws.SalesTax</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>SalesTax</servlet-name>
 <url-pattern>/tax</url-pattern>
 </servlet-mapping>
</web-app>

You’re now ready to package the web service. Create a
salestax.war file as indicated in figure 9.2.

 Optionally, you could package the web service in a
*.wsr file. For example, instead of packaging the exam-
ple in salestax.war, you could package it in salestax.wsr.
What’s the difference? From a content point of view,
nothing. A *.wsr file has the exact same content as a
*.war file. But the deployer deploys *.wsr files after *.war

Listing 9.2 The web.xml for the web service

C

D

Returns sales
tax rate

Identifies web
service class

Identifies context used
to access web service

Figure 9.2 The salestax.war file
contains only two files: the class
file that implements the web
service and the standard
descriptor file.

240 CHAPTER 9 Configuring Web Services
files. If it’s important to have a web service deployed after the web applications, name
the file *.wsr.
DEPLOYING AND ACCESSING THE WEB SERVICE

Deploying the web service is as easy as deploying any other web application; you copy
the WAR file to the deploy directory. The application server creates the WSDL automat-
ically. You can view web services deployed to the application server by going to the
URL http://localhost:8080/jbossws/services. Figure 9.3 shows the resulting page with
the SalesTax web service displayed.

Click the URL identified by Endpoint Address to access the WSDL. The WSDL URL is
important because you’ll need it to create the client application.

9.2.3 Manually generating the WSDL

Instead of letting the application server generate the WSDL, you could generate it
manually and include it in your WAR file. Run the wsprovide utility as follows:

wsprovide –o wsgen –c XXX –w org.jbia.ws.SalesTax

The –o option indicates that the output goes in the wsgen directory. The –c option
provides the class path (XXX in the example) where you can find the endpoint class,
SalesTax in this case. The –w option indicates to generate a WSDL file.

 The generated WSDL contains a placeholder for the web service URL; you must
supply the proper URL, as shown in listing 9.3.

...
 <service name='SalesTaxService'>
 <port binding='tns:SalesTaxBinding' name='SalesTaxPort'>
 <soap:address location='http://localhost:8080/salestax/tax'/>
 </port>
 </service>
...

Listing 9.3 Excerpt for the WSDL using an updated web service URL

Figure 9.3 This
screenshot displays
information about the
example web service.
The Endpoint Address
value is a hyperlink to
the WSDL for the web
service.

Web service URL

241Developing a web service
The wsprovide utility is only one of many web service utilities provided by the applica-
tion server. Table 9.1 lists those utilities, without the suffixes .bat and .sh, and
describes their purposes. You can find the utilities in the bin directory. For usage
details, run the utility passing –h as a parameter. You’ll see examples of how to use
each of the tools (other than wstools) in this chapter.

Now that you’ve generated the WSDL file, let’s look at how you create a web service
using the top-down approach.

9.2.4 Developing a web service using the top-down strategy

To develop a web service using a top-down approach, you need to start with the WSDL
file. Then you run wsconsume to generate the class stubs from the WSDL and provide
the business logic for the web methods.

 To take the WSDL you generated and create the SalesTax class using the top-down
approach, you generate the stubs using wsconsume as follows:

wsconsume -o stubs -k wsgen/SalesTaxService.wsdl

The –o option causes the generated files to be placed in a directory named stubs. The
–k option indicates that the generated Java source files are to be kept; if this option
isn’t specified, the source files are removed and only the class files remain. Finally, the
WSDL file is the one generated by wsprovide earlier.

 When examining the files generated, you’ll notice that one of them is called Sales-
Tax.java. This file contains an interface that defines the web service. You need to make
a few changes to the original SalesTax class to use this interface, as noted in listing 9.4.

package org.jbia.ws;
import java.util.HashMap;
import javax.jws.*;
@WebService(endpointInterface="org.jbia.ws.SalesTax",
 portName="SalesTaxPort",
 wsdlLocation="WEB-INF/wsdl/SalesTaxService.wsdl")
public class SalesTaxImpl implements SalesTax {
 private HashMap<String, Double> tax;
 public SalesTaxImpl() {...}
 public void init() {...}
 public double getRate(String state) {...}

Table 9.1 Web service-related scripts

Script name Purpose

wsconsume Generates stubs or interfaces from a WSDL file. Used in top-down development.

wsprovide Generates a WSDL file from web service classes. Used in bottom-up development.

wsrunclient Runs a web service client and provides the necessary class path for that client.

wstools Script used for JSR-109 Web Services development.

Listing 9.4 A simple web service with top-down changes

B
C

D
E

No WebMethod
annotation

242 CHAPTER 9 Configuring Web Services
The class must be renamed to prevent the class name from clashing with the interface
name, and the class must implement the interface E. The @WebService annotation
must be modified to match the information in the WSDL file, so we add three elements:

■ The endpointInterface element B—Identifies the interface that defines the
web service. In the earlier bottom-up example, the class defined the web ser-
vice; therefore, you didn’t need this element in that example.

■ The portName element C—Identifies the port name. You get this information
from the WSDL file. If you don’t provide this information, the port name is
assumed to be derived from the class name (SalesTaxImplPort in this case).

■ The wsdlLocation element D—Identifies the location of the WSDL file. You can
specify any location within the web application, although a location within
META-INF or WEB-INF is generally preferred.

Note that the @WebMethod annotation isn’t required on the method because that
annotation is already on the method in the interface. We don’t show the contents of
the methods because they haven’t changed from the earlier example. Other than
these minor changes the class remains the same.

 You also have to make one change to the web.xml file, as shown in listing 9.5.
Because the servlet must refer to the class and not the interface, you have to change
the class name to reference SalesTaxImpl.

<web-app...>
 <servlet>
 <servlet-name>SalesTax</servlet-name>
 <servlet-class>org.jbia.ws.SalesTaxImpl</servlet-class>
 </servlet>
 ...
</web-app>

Now that you have all the files, compile the inter-
face and class, and package them along with the
WSDL and web.xml files in a WAR file, as illustrated
in figure 9.4. You can then deploy the WAR file and
access the web service.

 Now that you have your web service defined
using two different approaches, let’s turn our
attention to writing a client to access the service.

9.2.5 Developing the client

The example client is a simple command-line
application that takes a list of state codes on the
command line and prints the sales tax rate for
each state. First, you generate the stubs for the cli-
ent from WSDL. Note that this means that the

Listing 9.5 The web.xml file with top-down changes

The only
change

Figure 9.4 The salestax.war file
contains more files when you use a
top-down approach to construct web
services. Compare this list of files to
that shown in figure 9.2.

243Developing a web service
client is coded in a top-down approach. To generate the stubs, make sure that the appli-
cation server is running, the web service is deployed, and that you can access it from a
browser as shown earlier in section 9.2.2. Use the wsconsume utility to generate the stub
files as follows:

wsconsume http://localhost:8080/salestax/tax?wsdl

The wsconsume utility creates the stub files and compiles them. You’ll need to include
the generated classes in your class path when you compile the client and the classes in
the final JAR file for the client. If you develop the service and the client on the same
machine, make sure that the client doesn’t have visibility to the files that make up the
web service; otherwise, the compiler will get confused. For example, the generated
files contain an interface named org.jbia.ws.SalesTax, which is the same name as
the class that implements the web service if you used a bottom-up approach. If both
are available to the compiler or the runtime, the wrong one might be used.

 Now that you have the stubs, you can write the client. The code is shown in listing 9.6.

package org.jbia.ws;
public class Client {
 public static void main(String[] args) {
 if (args.length > 0) {
 SalesTaxService svc = new SalesTaxService();
 SalesTax tax = svc.getSalesTaxPort();
 for (int i = 0; i < args.length; i++) {
 double rate = tax.getRate(args[i]);
 System.out.println("Sales tax for " + args[i] + " is " + rate);
}}}}

The first step is to declare the service B. Once you have it, you can obtain the service
endpoint C and then call the method D. As we mentioned earlier, the SalesTax item
referenced is the interface generated by wsconsume, not the class that implements the
web service.

 That’s all there is to it. Using a web service isn’t that much different from using a local
library of classes in a JAR file. The secret is that the stubs and the JAX-WS implementation
within JBossWS handle all the plumbing code, enabling you to concentrate on the busi-
ness logic.
PACKAGING AND RUNNING THE CLIENT

Now you’re ready to compile and package the cli-
ent. Remember to include the generated class
files in the class path for the compiler and to add
them to the JAR file, as shown in figure 9.5.

 In the example, you coded the Client class.
The wsconsume utility generated the rest of the
class files.

 Use the wsrunclient script to run the client.
This script automatically adds to the class path
the JAR files needed to run web service clients.

Listing 9.6 The web services client

Creates service B

Obtains
service
endpoint

C

D Invokes service method

Figure 9.5 Here are the contents of the
client JAR file. Only the Client.class file is
hand-coded; the other files are generated
by the wsconsume utility.

244 CHAPTER 9 Configuring Web Services
 Here’s an example of running the client:

>wsrunclient -classpath $JBOSS_HOME/client/jbossall-client.jar:./client.jar

➥ org.jbia.ws.Client CA NH TX
Sales tax for CA is 7.75
Sales tax for NH is 0.0
Sales tax for TX is -1.0

TIP Did you add logging statements to your client and provide a log4j.prop-
erties file, but the expected log file never showed up? Examine the
wsrunclient script, and you’ll see that it sets the log4j.configuration
system property to wstools-log4j.xml, which you’ll not find anywhere. It
used to be in the client/jbossws-client.jar file, but now that file no lon-
ger appears. If you want to see logging output, remove that reference
from the wsrunclient script.

Now that you have a Java client for your web service, let’s look at writing a C# client.

9.2.6 Developing a C# client

The primary motivation behind Web Services is to enable organizations to exchange
data among heterogeneous systems. Therefore, we now show how to consume the web
service in the .NET Framework using C# and Visual Studio.

 In Visual Studio, create a new C# console application project called TaxClient. Once
the project is created, add a web reference to the project, as indicated in figure 9.6.

Notice that the URL used for the WSDL is that same as that used earlier for the wscon-
sume utility. By default, Visual Studio uses the hostname as the web reference name;
we changed it to salestax.

 The C# client does the same thing as the earlier Java client; it accepts state codes
on the command line and prints the sales tax rate for each state. The code is given in
listing 9.7.

using System;
using System.Collections.Generic;

Listing 9.7 The C# Web Services client

Figure 9.6 To add a web
service reference to a
Visual Studio project,
provide the URL for the
WSDL file and a name for
the Web reference.

245Developing a web service
using System.Text;
using TaxClient.salestax;
namespace org.jbia.ws {
 class Client {
 static void Main(string[] args) {
 if (args.Length == 0) {
 Console.WriteLine
 ("usage: TaxClient <list-of-states>");
 } else {
 SalesTaxService svc = new SalesTaxService();
 for (int i = 0; i < args.Length; i++) {
 getRate rr = new getRate();
 rr.arg0 = args[i];
 getRateResponse resp = svc.getRate(rr);
 double rate = resp.@return;
 Console.WriteLine("Sales tax for " + args[i] + " is " + rate);
}}}}}

The namespace used for the web service is a combination of the name of the proj-
ect and the name given to the web reference B. The usage instructions are slightly
different because the project name is used for the program name (for readers unfa-
miliar with C#, the end result for a compile is an EXE file). The code then gets the
web service C. Within the for loop that iterates through the command line parame-
ters, the code builds the parameter to pass to the web method D, calls the web
method passing the parameter E, and extracts the returned result F before print-
ing out the result.

9.2.7 Revisiting the SOAP binding styles

If you did a double take on the code because it looks a little strange, don’t worry. It
is strange. There are two SOAP binding styles: document and RPC. This code reflects
how a C# client is coded if you’re using document style. If you’re wondering where
the SOAP binding style was declared, recall that the web service container now
provides reasonable defaults for any options you don’t explicitly declare. Because
you never stated which binding style to use, the web service container, when it
generated the WSDL using the bottom-up approach, used the logical
default—document style.

 Document style makes perfect sense for the typical web services usage. For exam-
ple, if the example service were for use in real-world scenarios, you’d probably code it
so that it returned a collection of all sales tax rates, instead of a single rate. This way,
the client could ask for the rates once when it came up and then cache the rates for
repeated use. In that case, the web service would be returning a complex data type.
The best way to deal with a complex data type in a heterogeneous environment is to
use the document style to return a complex object and let the client extract the data
from the complex type using methods or properties to get that data.

 If you’re dealing with simple types, such as in the example, then you could change
the web service to use the RPC-style SOAP binding. Add a @SOAPBinding annotation to
the SalesTax web service, as shown in listing 9.8.

B

Prints usage
instructions

C

D

E
F

246 CHAPTER 9 Configuring Web Services
import javax.jws.soap.SOAPBinding;
@SOAPBinding(style=SOAPBinding.Style.RPC)
@WebService()
public class SalesTax {

Then you rebuild and redeploy the web service. If you plan on using the Java client we
showed you earlier with this web service, run the wsconsume utility again to generate
updated stubs; fewer classes will be generated, and fewer classes will be in the client’s
JAR file. No change is necessary to the client source code. It still works.

 For the C# client, ask Visual Studio to reload the WSDL by right-clicking the Sales-
Tax entry under Web References within the Solution Explorer panel and selecting the
Update Web Reference option. Then change the else clause within the client as
shown in listing 9.9.

 } else {
 SalesTaxService svc = new SalesTaxService();
 for (int i = 0; i < args.Length; i++) {
 double rate = svc.getRate(args[i]);
 Console.WriteLine("Sales tax for " + args[i] + " is " + rate);
 }

Now this looks better and more closely matches the Java coding. You can run the cli-
ent as follows to verify that you can access the web service properly:

>taxclient CA NH TX
Sales tax for CA is 7.75
Sales tax for NH is 0
Sales tax for TX is -1

There you have it—a Java POJO-based web service with both Java and C# clients.

9.3 Exploring JBossWS annotations
As you saw in the example, much of the configuration of Web Services can be done
through annotations. Although we don’t explain the annotations defined by JSR-181
(you can learn about them from the JSR-181 specification), we do want to cover the
annotations provided by JBossWS itself. There are two such annotations: @WebContext
and @EndpointConfig. A third annotation used with Web Services is the @Security-
Domain annotation, which is EJB-related.

9.3.1 Understanding the WebContext annotation

You use the org.jboss.wsf.spi.annotation.WebContext annotation to define items
normally declared in the web.xml file. These items are identified in table 9.2.

 The default column provides the value used if that element isn’t specified, not the
default value of the element itself; each element typically defaults to an empty string.
For example, if you don’t provide a contextRoot element, its value will be an empty
string, but at the time it’s used, the Web Services server will choose to use the archive
name to build the context root.

Listing 9.8 Specifying a different SOAP binding

Listing 9.9 Updated C# client for RPC SOAP binding

New lines added

247Exploring JBossWS annotations
You might have noticed that most of the annotation elements come into play only if
the endpoint is also an EJB. To show how the WebContext annotation is used, we also
must show how to convert the earlier POJO into an EJB. Let’s do that next.
CONVERTING THE ENDPOINT TO AN EJB

Converting the SalesTax POJO web service into an EJB is fairly simple using annota-
tions. Listing 9.10 highlights the changes necessary.

import org.jboss.wsf.spi.annotation.WebContext;
import javax.ejb.Stateless;
@Stateless
@WebContext(contextRoot="/salestax", urlPattern="/tax")
@SOAPBinding(style=SOAPBinding.Style.RPC)

Table 9.2 WebContext annotation elements

Element name Default Description

contextRoot Name of JAR or
EAR file

The context used in the URL to access the web service.
This option is ignored if the endpoint isn’t an EJB.

virtualHosts -none- Specifies the virtual hosts to which the web service is
to be bound. Virtual hosts are defined in the server/
xxx/deployer/jbossweb.sar/server.xml file.

urlPattern Name of the class The name appended to the context root to form the full
URL. This option is ignored if the endpoint isn’t
an EJB.

authMethod -none- Identifies if the client needs to be authenticated to use
the web service. Valid values are BASIC and
CLIENT-CERT. This option is ignored if the endpoint
isn’t an EJB.

transportGuarantee NONE Indicates the level at which the transport mechanism
will guarantee that the transmitted data hasn’t been
tampered with. The possible values are

■ NONE—The data is passed using plain text (not
encoded). There’s no guarantee that the data
hasn’t been tampered with.

■ INTEGRAL—The transport mechanism guaran-
tees that the data can’t be modified while in transit.

■ CONFIDENTIAL—The data is encrypted before
being transmitted. This also guarantees that the
data can’t be modified.

Usually, any guarantee other than NONE causes the
data to be sent using SSL.
This option is ignored if the endpoint isn’t an EJB.

secureWSDLAccess True If the endpoint is secure (authentication is required to
access the endpoint), then this indicates if authentica-
tion is also required to access the WSDL. This setting
is ignored if the endpoint isn’t secure.

Listing 9.10 Implementing the endpoint as an EJB

B

C
D

248 CHAPTER 9 Configuring Web Services
@WebService()
public class SalesTax {...}

First, the packages that contain the annotations are imported B, then the @State-
less annotation C declares the class to be a stateless session bean, and finally the
@WebContext annotation D provides the context information that was supplied as
part of the web application when the web service was a POJO.

 Because the endpoint is now an EJB, you package it as an EJB JAR; you no longer
need a web.xml file. The complete JAR file contents are given in figure 9.7. If you
deploy this JAR file, remember to first undeploy
the salestax.war file. Once it’s deployed, the Java
and C# clients should still work.

 By the way, if you didn’t specify a contextRoot or
urlPattern element for the WebContext annota-
tion, the URL for the WSDL looks something like
http://jbiahost: 8080/salestax/SalesTax?wsdl. The
default values for contextRoot and urlPattern are
salestax (the JAR filename) and SalesTax (the class
name) for this example.

9.3.2 Understanding the EndpointConfig annotation

The org.jboss.ws.annotation.EndpointConfig annotation is used to identify the
configuration to use with the endpoint. Table 9.3 describes the elements that can be set.

Here’s an excerpt from the default JAX-WS configuration file:

<jaxws-config ...>
 ...
 <endpoint-config>
 <config-name>Standard WSAddressing Endpoint</config-name>
 <pre-handler-chains>
 <javaee:handler-chain>

Table 9.3 EndpointConfig annotation elements

Element name Default Description

configName -none- Identifies the configuration to use.

configFile server/xxx/deploy/
jbossws.sar/META-INF/
standard-jaxws-endpoint-config.xml

Identifies the file containing the endpoint config-
urations. This element is ignored if
configName isn’t supplied. If you‘re using the
old JAX-RPC style of web services, a correspond-
ing standard-jaxrpc-endpoint-config.xml configu-
ration file is used instead.
The location is relative to the application’s loca-
tion. For example, with the salestax.war file, you
could place a handlers.xml file into the WEB-INF
directory, in which case the value of
configFile would be WEB-INF/handlers.xml.

Figure 9.7 Here’s the salestax.jar
file containing an EJB endpoint. All
you need is the class that implements
the EJB.

249Securing a web service
 <javaee:protocol-bindings>##SOAP11_HTTP
 </javaee:protocol-bindings>
 <javaee:handler>
 <javaee:handler-name>WSAddressing Handler</javaee:handler-name>
 <javaee:handler-class>
 org.jboss.ws.extensions.addressing.jaxws.WSAddressingServerHandler
 </javaee:handler-class>
 </javaee:handler>
 </javaee:handler-chain>
 </pre-handler-chains>
 </endpoint-config>
 ...
</jaxws-config>

An endpoint configuration, denoted by the <endpoint-config> tag, has a number of
attributes, as shown in table 9.4.

Let’s now turn our attention to securing the web service.

9.4 Securing a web service
Securing a web service includes authorization (and its companion, authentication) and
encryption. We look at web service authorization and then venture into encryption.

9.4.1 Authorizing web service access

By default, anyone can call a web service. Although this might be acceptable for a web
service accessed only from within a company or for a general-purpose query such as

Table 9.4 Endpoint configuration attributes

Attribute Description

<config-name> Identifies the configuration. This name is used in the configName
element of the EndpointConfig annotation.

<pre-handler-chains> Identifies code that will process the message before it’s passed to the
endpoint. Typical handlers include the following:

■ Addressing service handler—Adds the addressing
information to the message context as the value for the
JAXWSAConstants.SERVER_ADDRESSING_
PROPERTIES_INBOUND property

■ Security handler—Handles access control

<post-handler-chains> Identifies code that processes the result after the endpoint has
responded to the messages and before the response is returned to
the client.

<feature> Identifies particular features to use. You can use this attribute to get
the Message Transmission Optimization Mechanism (MTOM) feature,
which is used to more efficiently serialize messages containing the
MIME types image/jpeg, text/xml, application/xml and
application/octet-stream. The usage is <feature>
http://org.jboss.ws/mtom</feature>.

<property> Used to identify name/value pairs of properties.

250 CHAPTER 9 Configuring Web Services
stock quotes, it’s probably not the best thing for a web service that, say, obtains some-
one’s medical records.

 In this section, we show you how to secure the SalesTax web service. First, we must
decide on a security realm, then define some accounts and roles in that realm, and
finally use that realm to provide authentication and authorization for the web service.

9.4.2 Defining the security realm

An examination of the server/xxx/conf/login-config.xml file shows that a security
realm, named JBossWS, is used to test security for web services. We use that realm
because it’s suitable for our purposes. You could easily define a security realm that
uses Lightweight Directory Access Protocol (LDAP) or a database to store the authenti-
cation information.

 The JBossWS realm uses the files server/xxx/conf/props/jbossws-users.properties
and jbossws-roles.properties to define the accounts and roles. Add a role, merchant,
and assign an account name and password to each merchant who contracts to use the
SalesTax web service. Assuming two merchants have signed up, the jbossws-users.prop-
erties would contain the following (although probably with stronger passwords):

TJs_Pizza=password1
A1_Auto_Repair=password2

And the jbossws-roles.properties file would contain the following:

TJs_Pizza=merchant
A1_Auto_Repair=merchant

Now that the realm is set up, let’s look into securing both the POJO and the EJB Web
Services.
SECURING THE POJO WEB SERVICE

Because a POJO web service is packaged in a WAR file and uses the same descriptors.
you set access control on the web service the same way as you would for a servlet or JSP.
Listing 9.11 highlights the new lines you need to add to the web.xml file.

<web-app ...>
 ...
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Secure Sales Tax</web-resource-name>
 <url-pattern>/tax</url-pattern>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>merchant</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>

Listing 9.11 Security-related changes made to the web.xml file

Context
to secure

B

Secures only
POST requestsC

Authorized roleD

Uses BASIC
authentication

E

251Securing a web service
 <realm-name>JBossWS</realm-name>
 </login-config>
 <security-role>
 <role-name>merchant</role-name>
 </security-role>
</web-app>

Because the web service uses the /tax context, that’s the context that must be
secured B. This is the same value that would be placed into the urlPattern element
of the @WebContext annotation. The role name, merchant D, has to match the roles
defined in the jbossws-roles.properties file. For the example, we use BASIC authenti-
cation E.

 Only POST requests are secured C. The client uses POST requests to make the web
service calls and a GET request to access the WSDL. The JAX-WS API doesn’t provide a
mechanism to specify the account name and password when the client obtains the
WSDL; securing only POST requests ensures that the client still has access to the WSDL.

 You need a jboss-web.xml file to identify the JNDI name for the security realm. Use
the existing JBossWS realm, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<jboss-web>
 <security-domain>java:/jaas/JBossWS</security-domain>
</jboss-web>

Now that you have all the files, you can package them
into the WAR file and deploy it. The contents of the
WAR file are illustrated in figure 9.8.

 Now that you have the web service running, you
need to modify the client to provide the proper cre-
dentials to access the web service. Let’s do that next.
MODIFYING THE CLIENT TO ACCESS A SECURE WEB SERVICE

The client needs to supply the username and pass-
word when accessing the web service. To keep the
changes to the client simple, we hard-code one of the
accounts into the client. You need to add several lines
right after getting the web services port. Listing 9.12 highlights the new lines in con-
text. (The first and last lines are from the earlier example.)

...
SalesTax tax = svc.getSalesTaxPort();
BindingProvider bp = (BindingProvider)tax;
Map<String, Object> rc = bp.getRequestContext();
rc.put(BindingProvider.USERNAME_PROPERTY, "TJs_Pizza");
rc.put(BindingProvider.PASSWORD_PROPERTY, "password1");
for (int i = 0; i < args.length; i++) {
...

Listing 9.12 Security-related changes to the client

Authorized roleD

B
C

D

Figure 9.8 Here are the contents
of the WAR file for a secured POJO
web service. The only additional file,
beyond what is listed in figure 9.2,
is the jboss-web.xml file.

252 CHAPTER 9 Configuring Web Services
The object returned by the getXXXPort method is versatile. Besides implementing the
web service endpoint, which is SalesTax in this example, that object also implements
the javax.xml.ws.BindingProvider interface B. This interface owns a Map contain-
ing properties used for the request C where you set the username and password D.

 Now that you have the client updated, compile it and run it as before, using the
wsrunclient script. You should once again get the desired sales tax rates. To verify
that the authentication is working, you can either scan the server log file looking for
entries from org.jboss.security.auth.spi.UsersRolesLoginModule, or you can
change the code to provide an invalid username or password—in which case, you
should get an HTTP 401 error reported.

 Now that the secured POJO version of the web service is running, let’s turn our
attention to securing the EJB version of the web service.
SECURING THE EJB WEB SERVICE

Use the WebContext annotation to define the security configuration information. List-
ing 9.13 shows the modified SalesTax EJB web service.

...
@WebService()
@WebContext(contextRoot = "/salestax", urlPattern = "/tax",
 authMethod = "BASIC",
 secureWSDLAccess = false)
@SecurityDomain(value = "JBossWS")
@Stateless
public class SalesTax {...}

You only need to change three lines to make the EJB secure. First, the authMethod ele-
ment for the @WebContext annotation indicates that the BASIC authentication mecha-
nism is used to authenticate the user B. This setting corresponds to the <auth-method>
tag in the web.xml file for the POJO web service. The secureWSDLAccess element is set
to false C so that the client, and others, can access the WSDL without supplying cre-
dentials. Finally, the value element of the @SecurityDomain annotation identifies the
name of the login module used D. This setting corresponds to the <security-domain>
tag within the jboss-web.xml file used for the POJO web service, although without the
java:/jaas/ prefix. You could also provide the prefix as part of the value element, such
as value="java:/jaas/JBossWS", but we recommend that you don’t.

 Compile the source file and package the class file into salestax.jar as you did ear-
lier. Once you deploy the JAR file (don’t forget to undeploy the salestax.war file first if
it’s still deployed), you should be able to access the WSDL via a browser without having
to log in. In addition, you should be able to run the client to access the web service.

9.5 Encrypting SOAP messages
For confidential information such as medical records, you’ll want to also encrypt the
message so that the contents can’t be monitored during transport. In this section, we
show you how to encrypt the SalesTax web service.

Listing 9.13 Security-related changes to the EJB web service

B
C

D

253Encrypting SOAP messages
 One of the unique aspects of encrypting a web service is that it can be done in two
different ways. First, you can use SSL to transport messages using HTTPS. The mecha-
nisms used to set this up are much the same as for using SSL with a web application.
You can also use WS-Security; the contents of the message are encrypted by the JAX-WS
implementation on both the client and the server. These two methods are illustrated
in figure 9.9. In this chapter, we
cover WS-Security only, but you can
refer to chapter 6 for information
on setting up SSL.

 The steps to encrypt the messages
are to generate the security certifi-
cates and to configure the server and
client to use those certificates. To
make this example complete, we
walk you through all the steps to
secure the web service, even the steps
to generate the certificates.

9.5.1 Generating the certificate

A web service request and response consists of two messages, each of which has to be
encrypted. This is illustrated in figure 9.9. Although you could use the same certificate
in both cases, you usually wouldn’t want to do so in a production environment because
it requires both the server and the client to have the same private key. Usually you want
to keep your private key, well, private.
Therefore, with a single client and a sin-
gle server you need two certificates so
that’s what you generate. We discuss
how you add more clients after we get
the single client example working.

 You need two keystores and two
truststores. Each keystore contains its
own certificate and the public key of
the certificate in the other keystore.
The truststores contain the public keys
of their corresponding certificates.
This configuration is illustrated in fig-
ure 9.10.

 Here are the commands used to set
up this configuration:

keytool -genkey -alias server -keyalg RSA -keystore server.keystore
keytool -genkey -alias client -keyalg RSA -keystore client.keystore
keytool -export -alias server -keystore server.keystore

➥ -file server_pub.key
keytool -export -alias client -keystore client.keystore

Client

JAX-WS

Transport

Web service

JAX-WS

Transport

WS-Security

HTTPS/SSL

request response

Figure 9.9 Web service requests and responses go
though both the JAX-WS and transport layers, so either
layer can be used to encrypt and decrypt the requests
and responses.

client.keystore

client certificate

server public key

server.keystore

server certificate

client public key

client.truststore

client public key

server.truststore

server public key

Client system Server system

Figure 9.10 Note the relationships among the
certificates stored in the keystores and truststores.
The sender uses the receiver’s public key, which is
stored in the keystore, to encrypt the message. The
receiver uses its certificate, which contains both its
public and private keys, to decrypt the message.

254 CHAPTER 9 Configuring Web Services
➥ -file client_pub.key
keytool -import -alias client -keystore server.keystore

➥ -file client_pub.key
keytool -import -alias server -keystore client.keystore

➥ -file server_pub.key
keytool -import -alias client -keystore client.truststore

➥ -file client_pub.key
keytool -import -alias server -keystore server.truststore

➥ -file server_pub.key

When you’re creating the certificates (the first two commands), the keytool command
asks for a password for both for the keystore and for the certificate. Remember the
passwords you used. You’ll need them later.

9.5.2 Securing the server using WS-Security

For this example, we use the earlier RPC-style SalesTax POJO web service from sec-
tion 9.2.7. You have to complete two steps: configure the server to use its keystore and
truststore and configure the web service to use that configuration.

 The jboss-wsse-server.xml file identifies the keystore and the truststore to the
server. For a POJO web service, this file is placed into the WEB-INF directory; for an EJB
web service, you place it into the META-INF directory. In this file, you also indicate that
you want messages to be encrypted. Listing 9.14 shows the contents of the file.

<jboss-ws-security
 xmlns="http://www.jboss.com/ws-security/config"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.jboss.com/ws-security/config
http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
 <key-store-file>

 ➥WEB-INF/server.keystore</key-store-file>
 <key-store-type>jks</key-store-type>
 <key-store-password>password</key-store-password>
 <trust-store-file>

 ➥WEB-INF/server.truststore</trust-store-file>
 <trust-store-type>jks</trust-store-type>
 <trust-store-password>password</trust-store-password>
 <key-passwords>
 <key-password alias="server" password="serverpwd" />
 </key-passwords>
 <config>
 <encrypt type="x509v3" alias="client" />
 <requires>
 <encryption />
 </requires>
 </config>
</jboss-ws-security>

The locations of the keystore B and truststore E files are relative to the base directory
of the WAR file. The keystore and truststore use the same password (D G); you probably
want to use stronger passwords. The <key-store-type> C and <trust-store-type> F

Listing 9.14 Encryption-related security configuration file: jboss-wsse-server.xml

B
C

D

E
F

G

H

I

J

255Encrypting SOAP messages
default to JKS, so you could leave these tags out. The server key password is provided by
the <key-passwords> tag H because that password is used to access the server certificate
in the keystore. The <encryption/> tag J requests that the message be encrypted using
the alias provided by the <encrypt> tag I. The client’s public key is used to encrypt
the message on the server and is decrypted at the client using the client’s private key
from the client’s keystore. You can also provide <signature/> and <sign> tags to per-
form authentication.

 Add the @EndpointConfig annotation to the SalesTax class to indicate that you
want to use WS-Security. Listing 9.15 is an excerpt from the updated SalesTax class,
highlighting the added lines.

...
import org.jboss.ws.annotation.EndpointConfig;
...
@EndpointConfig(configName="Standard WSSecurity Endpoint")
public class SalesTax {...}

The import statement imports the annotation class B, and the configName element
identifies the configuration you want to use C. The valid configurations can be found
in the file server/xxx/deploy/jbossws.sar/META-INF/standard-jaxws-endpoint-config.
xml. Listing 9.16 is an excerpt from that file, showing the Standard WSSecurity

Endpoint configuration.

<jaxws-config ...>
 ...
<endpoint-config>
<config-name>Standard WSSecurity Endpoint</config-name>
 <post-handler-chains>
 <javaee:handler-chain>
 <javaee:protocol-bindings>##SOAP11_HTTP</javaee:protocol-bindings>
 <javaee:handler>
 <javaee:handler-name>WSSecurity Handler</javaee:handler-name>
 <javaee:handler-class>

 ➥org.jboss.ws.extensions.security.jaxws.

 ➥WSSecurityHandlerServer
 </javaee:handler-class>
 </javaee:handler>
 </javaee:handler-chain>
 </post-handler-chains>
</endpoint-config>
</jaxws-config>

The configuration name given here B matches the configuration name used in the
EndpointConfig annotation. The WSSecurityHandlerServer class C handles the
encryption and decryption of the messages.

 You can add other handler chains to this configuration and even write your own han-
dler by extending the org.jboss.ws.core.jaxws.handler.GenericSOAPHandler class.

Listing 9.15 Encryption-related changes to the client

Listing 9.16 Endpoint-handler configuration file: standard-jaxws-endpoint-config.xml

B

C

Configuration
name

B

WS-Security
handler classC

256 CHAPTER 9 Configuring Web Services
Such a handler has access to and can manipulate the
full SOAP message.

 Now that you have all the files, you can package
them into the salestax.war file, as shown in figure 9.11,
and deploy the WAR file. If you have previously
deployed the salestax.jar file, remember to undeploy
it first.

 Note that the standard-jaxws-endpoint-config.xml
file isn’t included in the WAR file; it’s picked up from
its default location. If you’d like to place that file into
the WAR file, you could provide the location using
the configFile element on the @EndpointConfig
annotation. Once the WAR file deploys, you can
access the WSDL file through a browser.
ENCRYPTING AN EJB WEB SERVICE

The steps to encrypting an EJB web service are similar to that of a POJO web service,
except that the configuration files and the keystore go into the META-INF directory.
You’ll also have to change the location of
those files in the <key-store-file> and
<trust-store-file> tags in the jboss-
wsse-server.xml file. The packaged JAR file
is shown in figure 9.12.

 The configuration you have done so
far means that the server won’t recognize
a message unless it’s encrypted. You still
have to make the changes to get the cli-
ent to encrypt the message before send-
ing it. Let’s look at that next.

9.5.3 Securing the client using WS-Security

The client source files don’t require any changes to encrypt the message, although be
sure to use the earlier client from section 9.2.3 that doesn’t perform any login because
the server isn’t expecting it. The only thing you have to do is configure WS-Security.
You use two files to correspond to the two configuration files used for the server.

 First, provide the information regarding the keystore and truststore. You can do
this by creating a jboss-wsse-client.xml file and placing the necessary information into
it, as shown in listing 9.17.

<?xml version="1.0" encoding="UTF-8"?>
<jboss-ws-security
 xmlns="http://www.jboss.com/ws-security/config"

Listing 9.17 Client configuration file: jboss-wsse-client.xml

Figure 9.11 Here are the
contents of salestax.war when
using WS-Security. The additional
files, beyond what you saw in figure
9.2, are the keystore, truststore,
and jboss-wsse-server.xml file.

Figure 9.12 Here are the contents of
salestax.jar, which contains an EJB-based
endpoint, when using WS-Security. The keystore,
truststore, and the jboss-wsse-server.xml file are
the additional files, as in the previous figure, but
the files are placed into the META-INF directory.

257Encrypting SOAP messages
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.jboss.com/ws-security/config
 http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
 <key-store-file>

 ➥META-INF/client.keystore</key-store-file>
 <key-store-type>jks</key-store-type>
 <key-store-password>password</key-store-password>
 <trust-store-file>

 ➥META-INF/client.truststore</trust-store-file>
 <trust-store-type>jks</trust-store-type>
 <trust-store-password>password</trust-store-password>
 <key-passwords>
 <key-password alias="server"
 password="clientpwd" />
 </key-passwords>
 <config>
 <encrypt type="x509v3" alias="server"/>
 <requires>
 <encryption/>
 </requires>
 </config>
</jboss-ws-security>

The contents of this file look similar to that used by the server, the only difference
being that the keystore and truststore are located in the META-INF directory. The
server public key B is used to encrypt the message, which is decrypted at the server
using the server’s private key.

 You can leave out the information about the keystore, truststore, their passwords,
and types, and provide that information using the following system properties:

■ org.jboss.ws.wsse.keyStore
■ org.jboss.ws.wsse.keyStorePassword
■ org.jboss.ws.wsse.keyStoreType
■ org.jboss.ws.wsse.trustStore
■ org.jboss.ws.wsse.trustStorePassword
■ org.jboss.ws.wsse.trustStoreType

If you specify this information both in the configuration file and as system properties,
the configuration file takes precedence. Additionally, because the same class handles
the jboss-wsse-client.xml and jboss-wsse-server.xml files, the system properties could be
used for the server also. Because the server might serve multiple Web Services, each
with their own WS-Security configuration, it makes sense that the settings in the con-
figuration file take precedence over the system properties.

 You have to state that you want to use WS-Security by creating a META-INF/stan-
dard-jaxws-client-config.xml file. An example of this file can be found at server/xxx/
deploy/jbossws.sar/META-INF/standard-jaxws-client-config.xml. Copy this file to your
project and edit it, removing the configurations that you don’t want. The only con-
figuration you should leave is Standard WSSecurity Client, as shown in list-
ing 9.18.

B Identifies password
for server key

Identifies
certificate alias

Requests message
encryption

258 CHAPTER 9 Configuring Web Services
<?xml version="1.0" encoding="UTF-8"?>
<jaxws-config xmlns="urn:jboss:jaxws-config:2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:javaee="http://java.sun.com/xml/ns/javaee"
xsi:schemaLocation="urn:jboss:jaxws-config:2.0 jaxws-config_2_0.xsd"
>
<client-config>
 <config-name>Standard WSSecurity Client</config-name>
 <post-handler-chains>
 <javaee:handler-chain>
 <javaee:protocol-bindings>##SOAP11_HTTP</javaee:protocol-bindings>
 <javaee:handler>
<javaee:handler-name>WSSecurityHandlerOutbound</javaee:handler-name>
 <javaee:handler-class>

 ➥org.jboss.ws.extensions.security.jaxws.

 ➥WSSecurityHandlerClient
 </javaee:handler-class>
 </javaee:handler>
 </javaee:handler-chain>
 </post-handler-chains>
</client-config>
</jaxws-config>

The WSSecurityHandlerClient B is the client-side handler that corresponds to the
WSSecurityHandlerServer server-side handler. Both of these classes defer to the
WSSecurityHandler class to handle the messages.

 All that’s left to do is package the files
into a JAR file as illustrated in figure 9.13.
The classes are the same as from the earlier
example; only the files in META-INF are new.

 Once you have the JAR file, you can run
the client, once again using wsrunclient. It
should work. You can verify that the messages
are encrypted by turning on message tracing.
Uncomment the Enable JBossWS message
tracing entry in the jboss-log4j.xml file
before starting the application server. Then
look for the org.jboss.ws.core.MessageTrace
entries in the server.log file.

9.5.4 Signing the messages using WS-Security

WS-Security provides a mechanism to sign a message, providing an alternate means of
authenticating the user. To illustrate how this works, we modify the example that
encrypts messages.

 For signing a message, the sender uses his or her private key, and the receiver uses
the sender’s public key to verify the sender’s identity. This means that both the client’s
public key and the server’s public key must be in the server’s truststore. This configu-
ration is illustrated in figure 9.14.

Listing 9.18 Client configuration file: standard-jaxws-client-config.xml

Configuration
name

B WS-Security
handler class

Figure 9.13 Here are the contents of the
client.jar file when using WS-Security. All the
classes in the META-INF directory are new.

259Encrypting SOAP messages
Assuming that the keystores and truststores are already set up for encryption, here are
the additional commands used to create this configuration:

keytool -import -alias server -keystore client.truststore

➥ -file server_pub.key
keytool -import -alias client -keystore server.truststore

➥ -file client_pub.key

Once the keys are set up, you must modify the configuration files to use the keys to
sign the messages. Listing 9.19 shows an excerpt from the updated jboss-wsse-
server.xml file.

<jboss-ws-security ...>
 ...
 <config>
 <sign type="x509v3" alias="server" />
 <encrypt type="x509v3" alias="client" />
 <requires>
 <signature />
 <encryption />
 </requires>
 </config>
</jboss-ws-security>

The server key is used to sign messages sent by the server B. The keystore and trust-
store-related settings are the same as for the earlier encryption example; only the two
lines identified were added.

 The changes to the jboss-wsse-client.xml file are similar, as shown in listing 9.20.

<jboss-ws-security ...>
 ...
 <config>
 <sign type="x509v3" alias="client" />
 <encrypt type="x509v3" alias="server" />

Listing 9.19 WS-Security configuration file, jboss-wsse-server.xml, changes

Listing 9.20 WS-Security configuration file, jboss-wsse-client.xml, changes

client.keystore

client certificate

server public key

server.keystore

server certificate

client public key

client.truststore

client public key

server.truststore

server public key

Client system Server system

client public keyserver public key

Figure 9.14 Here are the relationships among
the keystores and truststores for signing
messages. The only difference between this
and figure 9.10 is that the other system’s
public key has been added to the truststore.

Identifies certificate
used to sign message

B

Requires message
to be signed

Identifies certificate
used to sign message

B

260 CHAPTER 9 Configuring Web Services
 <requires>
 <signature />
 <encryption />
 </requires>
 </config>
</jboss-ws-security>

In this case the client key is used to sign the messages B.
 Package up the server and deploy it, package up the client, and then run the cli-

ent. The messages are now signed. You can verify this by looking at the SOAP messages
in the server.log file (after turning on message tracing as indicated at the end of sec-
tion 9.5.3); you’ll see a <ds:Signature> entry has been added to the message.

9.6 Summary
This chapter introduced you to Web Services, including its terminology and how that
terminology applied to the web service architecture. You learned terms such as end-
points, WSDL, and UDDI. You examined the different SOAP binding styles and should
now know the difference between the RPC and document styles.

 You built a simple web service, which you then used to examine various configura-
tion topics. You learned how to package and deploy both POJO and EJB-style Web Ser-
vices. You created Web Services using both top-down and bottom-up approaches. You
learned how to use the wsconsume, wsprovide, and wsrunclient utilities. You
explored various annotations and configuration files that you can use to configure
your web service.

 You created both Java and C# clients to access the web service. Working with the C#
client led to a more in-depth discussion and understanding of the SOAP binding
styles.

 You learned how to secure your web service, using both mechanisms to secure web
applications and WS-Security. You learned how to use WS-Security to encrypt a mes-
sage and to sign a message, providing an alternative to standard web application
authentication and authorization.

9.7 References
JSR-181, Web Services Metadata for the Java Platform, specification—http://jcp.org/en/

jsr/detail?id=181
JSR-224, JAX-WS 2.0, specification—http://jcp.org/en/jsr/detail?id=224
JBossWS User Guide—http://jbws.dyndns.org/mediawiki/index.php?title=JBossWS
JAX-RPC User Guide—http://jbws.dyndns.org/mediawiki/index.php?title=

JAX-RPC_User_Guide

Requires message
to be signed

http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=224
http://jbws.dyndns.org/mediawiki/index.php?title=JBossWS
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-RPC_User_Guide
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-RPC_User_Guide

Part 3

JBoss Portal

Let’s take a break from our in-depth discussion of JBoss AS configuration
and look at one of the other projects available from JBoss—the JBoss Portal. The
JBoss Portal is one of the products that make up the JBoss Enterprise Middleware
Suite (JEMS). The JBoss Portal is a fairly big topic, so we devote two chapters to it.

 Chapter 10 describes portals in general and the JBoss Portal in particular. We
explain how to install the Portal and set it up to use a database. Then, we provide
an example portlet that is a little more complex than the other examples in this
book because we want to highlight various portlet coding techniques. We then
use the example to describe how to configure the Portal to include the portlet,
using both configuration files and the Management Portlet.

 In chapter 11, you’ll learn how to use the Content Management System
(CMS) that comes with the JBoss Portal, and how to define access control for
your portal and portlets. The chapter ends with a section that puts everything
you’ve learned together to create a custom portal.

 Once you’ve gone through both chapters, you should feel comfortable with
deploying portlets and configuring the Portal.

The JBoss
 Portal and portlets
The JBoss Portal is worthy of a book in its own right, so we can’t do it complete jus-
tice in two chapters. Our aim is to introduce you to working with the Portal so that
you feel familiar enough with it to tackle more in-depth portal-related topics. Portals
enable you to build websites by putting together disparate pieces of code, called
portlets, into a single page, making those separate applications appear to function as
one. In addition, many portals enable users to customize the layout of their home
pages to include the information they’re most concerned with, making it more
likely that the users will use those pages as portals into the World Wide Web.

This chapter covers
■ Understanding portals
■ Installing the JBoss Portal
■ Developing a portlet
■ Configuring a portlet
■ Creating a portlet instance
■ Creating a portlet window
263

264 CHAPTER 10 The JBoss Portal and portlets
 We recommend that you read the Portal documentation, but we don’t assume that
you have any experience with portals. Therefore, this chapter and the next, “Config-
uring the JBoss Portal,” can serve as an introduction into portals. But if the Portal doc-
umentation covers a particular topic—such as installation—in detail, we cover it only
briefly here. In addition, the documentation that accompanies the Portal provides a
good introduction to portals in general and the JBoss Portal specifically.

NOTE The code in chapters 10 and 11 has been tested with JBoss Portal 2.6.4
running in JBoss AS 4.2.2. Much of the code also works with earlier 2.6.x
and 2.4.x releases but doesn’t work with 2.4.0 due to various bugs, which
were fixed in 2.4.1. The JBoss Portal 2.6.x doesn’t run on JBoss AS 5.0.

In this chapter, we approach the Portal from the perspective of a portlet developer
attempting to write, configure, and deploy a portlet to the Portal. We start with a simple,
yet useful, portlet that’s a step beyond the simple examples provided in the Portal doc-
umentation. We use that portlet to guide you through some aspects of portal configu-
ration, up to the point of displaying the portlet on a portal page. Chapter 11 picks up
where this chapter leaves off, introducing and expanding on the various configuration
topics. But we don’t ignore the portal administrator’s role in managing a portal. We
cover many administration topics, such as page layouts and security, in the next chapter.

10.1 Introducing the JBoss Portal
The JBoss Portal is one of many projects in JEMS. The Portal stands out because,
unlike the other products that compose JEMS, the Portal is a full-blown application
that can be run out of the box. It comes with an integrated RSS news reader so that
you can easily set up a news feed, a Weather portlet, a basic Content Management Sys-
tem(CMS), and various other portlets.

 Besides the included portlets, you can easily deploy many other portlets to the portal
to expand its functionality—no coding necessary! The Portlet Swap website (http://
labs.jboss.com/portletswap) contains various portlets—many are tutorial oriented, but
some are useful out of the box, such as the IFrame portlet, which is used to easily embed
other websites within the portal. The JBoss Wiki and JBoss Forums projects provide a wiki
portlet and a user forums portlet, both of which can help engage users in your website.
Put these portlets together and, without any programming, you can have a website ready
to go in a flash.

 The JBoss Portal documentation lists a large set of features provided by the Portal.
We won’t repeat that entire list here, but some of the features worth noting are as follow:

■ Supports standards such as JSR-168, which we cover in section 10.1.1.
■ Implements single sign-on using the Java Authentication and Authorization Ser-

vice (JAAS). We cover this in the next chapter in section 11.4.
■ Supports clustering, an advanced topic that we leave for you to explore after

you’ve digested these two chapters.
■ Works with any database because it uses Hibernate for database access. We show

how to set it up for MySQL in section 10.1.3.

http://labs.jboss.com/portletswap
http://labs.jboss.com/portletswap

265Introducing the JBoss Portal
■ Uses themes to customize or personalize the portal layout. Although we don’t
discuss personalization, one of the cool new features in 2.6, we do show how to
customize the look of the portal in section 11.5.

■ Supports hot deployment of portlets and themes. You’ll make a limited use of
this feature to deploy the example portlet.

■ Supports internationalization of portlet content, another advanced topic we
leave for you to explore.

■ Supports portlets written using many industry-standard frameworks such as JSF,
Struts, Spring MVC, and AJAX. The example portlet uses JSP and the JavaServer
Pages Standard Tag Library (JSTL). We leave the others as advanced topics for
you to explore, but be sure to check out the framework examples at the Portlet
Swap website.

■ Provides a basic CMS with features such as WYSIWYG editing of HTML pages, ver-
sioning of content, simple URLs to access binary content, and internationaliza-
tion so that each user can see content in his language. We cover some topics
related to CMS in the next chapter, section 11.3.

As you can see from the list, we cover a lot of these features in this chapter and the
next. Let’s get started with the first topic—JSR-168.

10.1.1 Understanding JSR-168

The Portal includes a portlet container that’s an open source implementation of JSR-168,
Portlet Specification. This specification provides an API that enables a portlet written to
the portlet API to work with any portal that conforms to the specification.

 As with all specifications, you have some leeway in implementation. For example,
the specification requires certain functionality but leaves other functionality as
optional, such as caching. JBoss Portal implements the full specification except the
integration of custom portlet modes and custom window states. In addition, many
deployment and configuration considerations are left to the portal vendor. As you
read this chapter, we point out the configurations that are part of the specification
and the ones that are specific to the JBoss Portal.

NOTE We recommend that you obtain the Portlet Specification document,
available at http://jcp.org/en/jsr/detail?id=168. It’s fairly readable and
invaluable as a technical reference on a variety of topics, such as the port-
let tag library and Cascading Style Sheet (CSS) style definitions.

Now that you have a basic understanding of the JSR-168 specification, let’s look at
some of the terminology associated with portals.

10.1.2 Understanding portal terminology

As with all technology, portal technology has its own set of terms, and any discussion
of portals requires that you first understand those terms. Figure 10.1 illustrates the
relationships between the various objects that make up portal technology.
And here are the definitions of the terms:

http://jcp.org/en/jsr/detail?id=168

266 CHAPTER 10 The JBoss Portal and portlets
■ Portal—A collection of pages that contain portlet windows. The JBoss Portal sup-
ports declaration of multiple portals. A portal owns pages and portlet windows
but doesn’t own portlet instances. A portlet instance can be viewed within mul-
tiple portal pages, possibly in multiple portals.

■ Page—A view into the portal, containing multiple portlet windows. Corresponds
to a page that a user views in a browser.

■ Portlet window—A view into a portlet instance. You can have multiple portlet
windows for a single portlet instance. The windows can be on the same or differ-
ent pages or even in different portals.

■ Portlet instance—An instantiation of a portlet. The portlet instance maintains the
portlet preferences used to display data to a user. The portlet instance typically
contains a global configuration, which can be further customized for a given user.

■ Portlet—A piece of code that defines what a user can see or do. The portlet is
the application code written to provide a service or capability to the user. It
enables the integration of services in a portal.

We cover each of these concepts in detail in the following sections as we walk you
through the example portlet. But the first thing you need to do is install the Portal.

10.1.3 Installing the JBoss Portal

You can install the Portal in the following ways:

■ Via the Portal bundled with JBoss AS
■ Via the binary distribution (contains the Portal only)
■ Via the source distribution

Going the bundled route is the quickest way to get up and running to evaluate the
Portal. You download the bundle, unzip it, and run the application server. The bundle
uses a specific version of the application server and the Hypersonic database. We rec-
ommend that you switch to a different database for production use.

 Going the source route is the most complicated, mainly because you must perform
separate steps to build the portal and construct the database configuration. But this
option is probably the most satisfying to your inner geek.

 For this chapter, we go the binary route. The installation steps are as follow:

Portlet window

Portlet window

Page
Portlet window

Portlet window

Page
Portlet window

Portlet window

Page
Portal

Portlet
instance

Portlet
instance

Portlet Figure 10.1 Portal architecture and terminology

267Introducing the JBoss Portal
1 Download the binary distribution from http://labs.jboss.com/jbossportal/
download/index.html.

2 Configure the database. See the following text for details.
3 Deploy the portal service. You copy the jboss-portal.sar directory to the server/

xxx/deploy directory.

Once it’s installed, run the application server and point a browser at http://local-
host:8080/portal. The default portal page displays, as shown in figure 10.2.

As stated in step 2, you need to configure a database first, so let’s do that.
CONFIGURING THE DATABASE

The Portal supports any database that works with Hibernate. The setup directory in
the Portal distribution contains data source configuration files for a variety of data-
bases. Once you’ve selected a database, you complete the following steps:

1 Copy the JDBC driver for the database to the server/xxx/lib directory. You can
obtain the JDBC driver from the database vendor.

2 Use the database’s administration tools to create a database for the portal. You
can name the database anything.

Figure 10.2 The default portal home page contains a header that shows tabs for the available pages
(Home, News, and Weather). The body of the page has two columns. The left column contains a greeting
and a user portlet, and the right column shows CMS content.

http://labs.jboss.com/jbossportal/download/index.html
http://labs.jboss.com/jbossportal/download/index.html

268 CHAPTER 10 The JBoss Portal and portlets
3 Use the database’s administration tools to create a user for that database. You
must give the user the ability to create tables in the database. You can use any
username and password.

4 Edit the data source configuration file in the setup directory to reflect the data-
base, username, and password you selected in the previous steps.

5 Copy the data source configuration file to the server/xxx/deploy directory.

To execute steps 2 and 3 for MySQL, run the mysql utility and enter the following
commands:

CREATE DATABASE portaldb;
GRANT ALL PRIVILEGES ON portaldb.* TO 'portal'@'localhost'

➥ IDENTIFIED BY 'portalpassword' WITH GRANT OPTION;

Listing 10.1 shows the data source configuration file (step 4), portal-mysql-ds.xml, that
matches the database and account.

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
 <local-tx-datasource>
 <jndi-name>PortalDS</jndi-name>
 <connection-url>

➥ jdbc:mysql://localhost:3306/portaldb

➥ ?useServerPrepStmts=false

➥ &jdbcCompliantTruncation=false

➥ </connection-url>
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <user-name>portal</user-name>
 <password>portalpassword</password>
 </local-tx-datasource>
</datasources>

NOTE The 5.0 version of the MySQL database generates errors if data is truncated
when stored in the database, causing a problem when storing Boolean val-
ues. The internal representation is typically all bits on, whereas the database
stores only a single bit. To avoid this problem, set the jdbcCompliant-
Truncation property to false, as is done in the example data source con-
figuration file, and edit the MySQL initialization file (usually named my.ini
or mysql.ini) to remove the STRICT_TRANS_TABLES value from the
sql_mode setting. You must restart the database to enact the latter change.

Now that you have the Portal installed and a database configured, you’re almost ready
to start working on the example. But before you can, you need to know how to admin-
ister the Portal because you perform several administration tasks in the next sections.

10.1.4 Administering the JBoss Portal

You must log in as an administrator to manage the portal. The default administrator
username is admin with a password of admin. To log in, click the Login link located at

Listing 10.1 Data source configuration file for MySQL

On one line,
no whitespace

269Introducing the JBoss Portal
the upper-right corner of the header
(see figure 10.2). Once you’re
logged in, several links appear in the
border on the lower-right side of the
header; click the Admin link (see
figure 10.3).

 That link takes you to the Admin portal, which contains various pages that enable
you to manage the portal, as shown in figure 10.4.

Table 10.1 describes the four tabs on the administration portal. Each page hosts one
or more portlets that enable you to manage a particular resource within the portal.

Table 10.1 Understanding the pages on the administration portal

Page Description

CMS Contains the CMS Admin portlet, which enables you to manage the simple CMS provided
with the portal.

Members Contains the Identity Admin portlet, which enables you to manage users and roles. Users
are used to define authentication. Roles are used to define access control for the pages
and portlets in the portal.

Figure 10.4 The Admin page of the Admin portal shows where you can manage portals and their pages.
The other three tabs enable you to manage CMS content, users and roles (Members), and remote portlet
(WSRP).

Figure 10.3 Click the
Admin link in the header
to get to the Admin portal.

270 CHAPTER 10 The JBoss Portal and portlets
We return to the administration portal throughout the course of this chapter and the
next as we cover various topics.

10.2 Creating a portlet
The example portlet displays an image
from the web. For example, you can use
the Image portlet to display the Red Hat
logo, located at http://www.redhat.com/
g/chrome/logo_rh_home.png, which we
use as the default image.

 But you might not know the URLs for
some interesting images because they
change regularly. For example, one of our
favorite websites is the NASA Astronomy
Picture of the Day site, at http://antwrp.
gsfc.nasa.gov/apod/astropix.html. Each
day it displays a different picture at a dif-
ferent URL. To handle this changing
image URL, the Image portlet can take a
URL for a web page with an embedded image, and a regular expression that can extract
the image URL, and then display the image using this URL. In addition, the image is pre-
sented as a hyperlink to the original web page. Using this capability, we can configure
the Image portlet to display the daily astronomy picture in the portal. We don’t present
the code for this capability because it’s outside the scope of this chapter, but the source
code for the book contains many comments explaining how this works.

 Figure 10.5 provides an overview of the Image portlet, showing the relationships
among the various classes, JSPs, and properties files that make up the portlet.

 The subsections that follow list and describe the various files that make up the
portlet.

10.2.1 Coding the Image portlet

The example portlet uses JSP and JSTL, bringing up several JSP and JSTL-related topics.
We don’t go into detail on JSP or JSTL but focus instead on portlet-specific issues. We
choose to use JSP and the JSTL, instead of a framework such as Struts or JSF, to keep the
example simple and reduce the number of third-party dependencies.

WSRP Contains the Web Services for Remote Portlets (WSRP) Configuration portlet, which
enables you to configure remote portlets.

Admin Contains the Admin portlet, which enables you to manage portals, pages in those portals,
and portlets displayed in those pages.

Table 10.1 Understanding the pages on the administration portal (continued)

Page Description

edit.jsp

help.jsp

ImagePortlet
view.jsp

doView

doEdit

doHelp

ImageBean

message.properties

Figure 10.5 The architecture of the Image portlet.
The JSPs are responsible for displaying the
contents of the portlet. The ImagePortlet
object passes an ImageBean object to the view
and edit JSPs, which then use that data to decide
what to display. All message text displayed by the
JSPs is kept in a properties file for easy localization.

http://www.redhat.com/g/chrome/logo_rh_home.png
http://www.redhat.com/g/chrome/logo_rh_home.png
http://antwrp.gsfc.nasa.gov/apod/astropix.html
http://antwrp.gsfc.nasa.gov/apod/astropix.html

271Creating a portlet
 The full listing for the portlet is lengthy, so we present it in sections with commen-
tary after each section.

package org.jbia.portlet;
import java.io.*;
import java.net.*;
import java.net.URL;
import java.util.regex.*;
import javax.portlet.*;
public class ImagePortlet extends GenericPortlet {

The ImagePortlet class is a subclass of the GenericPortlet class, which provides a
default implementation of the javax.portlet.Portlet interface. The Generic-
Portlet class determines the current display mode and calls the appropriate method.
Several of the mode-related methods are implemented by the ImagePortlet class.

 You can find the javax.portlet package in the jboss-portal.sar/lib/portal-portlet-
jsr168api-lib.jar file. You need to include that file in the class path when you compile
the portlet.

 private String jspView;
 private String jspHelp;
 private String jspEdit;
 @Override
 public void init(PortletConfig config) throws PortletException {
 super.init(config);
 jspView = config.getInitParameter("jsp-view");
 jspHelp = config.getInitParameter("jsp-help");
 jspEdit = config.getInitParameter("jsp-edit");
 }

As we mentioned, the code uses JSPs. The names of the JSPs are stored in local fields
and obtained from the initialization parameters for the portlet. The init method, the
preferred location in which to initialize local fields, is called after the portlet class
is instantiated.

 We could have hardcoded the JSP names in the portlet. But we didn’t do so for two
reasons: First, part of our objective is to teach you things about portlets, and using the
getInitParameter method provides a convenient mechanism to introduce the con-
cept of initialization parameters. Second, by loading the names from a configuration
file you can easily move or rename the JSPs and still access them without having to
modify the source code; a simple configuration change will suffice.

 The portlet supports three display modes: view, help, and edit. Each mode has a
dedicated method invoked by code in the GenericPortlet class. The use of each
mode, as well as the code that implements each mode, is presented in the next three
blocks of code.

 @Override
 protected void doView(RenderRequest request,
 RenderResponse response) throws PortletException, IOException{
 resolveImage(request, response, true);
 response.setContentType("text/html");

272 CHAPTER 10 The JBoss Portal and portlets
 PortletRequestDispatcher prd =
 getPortletContext().getRequestDispatcher(jspView);
 prd.include(request, response);
 }

When a portlet is in view display mode, it displays its contents to the user. The doView
method is called when the portlet is in view mode. In the example, the code calls a
helper method, resolveImage, which we discuss later, to populate the JavaBean that it
sends to the JSP. Next, the code sets the content type to indicate it will be sending an
HTML document. The Portal supports only the text/HTML content type as output
from portlets; you can’t specify other content types, such as graphics images, like you
can with servlets.

 The last two statements indicate that the output generation will be performed by
the JSP identified by jspView, which was set up as part of initialization.

 @Override
 protected void doHelp(RenderRequest request,
 RenderResponse response) throws PortletException, IOException{
 response.setContentType("text/html");
 PortletRequestDispatcher prd =
 getPortletContext().getRequestDispatcher(jspHelp);
 prd.include(request, response);
 }

When a portlet is in help display mode, it displays help text to the user. The doHelp
method is called when the portlet is in help mode. The code sets the content type to
indicate it will be sending an HTML document. The last two statements indicate that the
output generation will be performed by the JSP identified by jspHelp, which was set up
as part of initialization. Except for the lack of the resolveImage call, the algorithm for
this method is similar to that of the doView method that we showed earlier.

 When a portlet is in edit display mode, it displays a form that allows users to person-
alize the output displayed by the portlet. The doEdit method, shown in listing 10.2, is
called when the portlet is in edit mode.

 @Override
 protected void doEdit(RenderRequest request,
 RenderResponse response) throws PortletException, IOException{
 ImageBean image =
 resolveImage(request, response, false);
 PortletURL action = response.createActionURL();
 action.setPortletMode(PortletMode.VIEW);
 image.setAction(action.toString());
 response.setContentType("text/html");
 PortletRequestDispatcher prd =
 getPortletContext().getRequestDispatcher(jspEdit);
 prd.include(request, response);
 }

As with the doView method, the code calls the resolveImage helper method to popu-
late the JavaBean that it sends to the JSP. It then calculates the URL used to send the

Listing 10.2 The doEdit method

B

273Creating a portlet
user’s changes back to the portlet and adds it to the JavaBean B. This URL depends
on the implementation of the portal, and the createActionURL method enables the
portlet to be portal agnostic. It sets the content type to indicate it’s sending an HTML
document. The last two statements indicate that the output generation will be per-
formed by the JSP identified by jspEdit, which was set up as part of initialization. The
algorithm for this method is similar to that of the doView method.

 The processAction method, shown in listing 10.3, is called when the user submits
data from the edit form.

 @Override
 public void processAction(ActionRequest request,
 ActionResponse response) throws PortletException, IOException{
 String title = request.getParameter("title");
 String url = request.getParameter("url");
 String regex = request.getParameter("regex");
 String submit = request.getParameter("submit");
 if (submit != null) {
 try {
 PortletPreferences pref = request.getPreferences();
 pref.setValue("title", title);
 pref.setValue("url", url);
 pref.setValue("regex", regex);
 pref.store();
 } catch (ReadOnlyException e) {}
 }
 response.setPortletMode(PortletMode.VIEW);
 }

The algorithm is simple. First, the code gets the user’s input from the input parame-
ters of the form B. Then it determines if the user pressed the submit button C and,
if so, updates the portlet preferences D. Note the call to the store method, which
persists the changes. These changes are used later during view mode when resolving
the image and creating the ImageBean.

 You shouldn’t use preferences as a database substitute. Although you, and many
other hotel guests, might leave your luggage with the bell captain at the hotel for later
pickup, you wouldn’t consider leaving your household furnishings with the bell cap-
tain. For that you’d rent a storage space. The bell captain’s storage room is similar to
the space the portal provides for preferences: It’s convenient, can handle small items,
and is personal (each portal user can provide his own preferences). A storage area is
more akin to a database and is a better solution if you need to store many things. If
you decide you need a database, we recommend that you don’t use the same database
used by the portal; you should define your own. Defining a database for a portlet is no
different than doing so for any other web application.

 Preferences can be updated only when the portal calls the processAction method,
which is called when the user enters data into a portlet in edit mode. Also, preferences
can be updated only if the user is logged in. Once the preferences are saved, the code
switches the portlet to view mode E.

Listing 10.3 The processAction method

B

C

D

Ignores
exceptions

E

274 CHAPTER 10 The JBoss Portal and portlets
 We’re now done with the portlet-specific methods. The rest of the methods are
helper methods specific to the Image portlet, but they highlight general portlet func-
tionality. The resolveImage method sets up the JavaBean passed to the JSPs. The
other methods handle the disparity between providing a direct URL for the image and
a URL for a web page that has an embedded image. Because the resolveImage
method is also long, we tackle it in sections with commentary after each section.

 private final ImageBean resolveImage(RenderRequest request,
 RenderResponse response,
 boolean isView) {
 PortletPreferences pref = request.getPreferences();
 String title = pref.getValue("title", null);
 String url = pref.getValue("url", null);
 String regex = pref.getValue("regex", null);

The information about what to display is stored in the preferences, so the first thing to
do is to retrieve that information from the preferences.

 ImageBean image = new ImageBean();

All data displayed by the JSP is passed to the JSP in a JavaBean, so the code creates an
ImageBean instance to hold that data. To keep this example simple, a single bean
holds all possible data passed to any of the JSPs. In real life, you should have multiple
beans, each with its own purpose.

 if (isView) {
 if (regex == null || regex.trim().length() == 0) {
 image.setUrl(url);
 } else {
 /* Refer to source for the code and description */
 }
 image.setLink(url);

The portlet could be in either view or edit mode. In view mode, the code determines
if the URL is for the image (no regex given) or if it’s for a web page with an embedded
image (regex is given), and sets the bean properties accordingly. Refer to the source
code for the book for the code that extracts the image URL from the web page.

 } else {
 image.setTitle(title);
 image.setUrl(url);
 image.setRegex(regex);
 }

If the portlet is in edit mode, the code sets the bean’s properties.

 request.setAttribute("image", image);

The code adds the bean to the request attributes so that the JSP can access the data
using the expression language.

 if (title != null && title.trim().length() > 0) {
 response.setTitle(title);
 }

275Creating a portlet
If there’s a title, which the code obtained from the preferences, it overrides the
default title.

 return image;
 }

Finally, the code returns the bean. In edit mode, the form action URL is added to the
bean, as you saw earlier in the doEdit method.

 We’re done with the source for the portlet. What do you have? You have a portlet
that handles three modes: help, edit, and view. In help mode, it displays some help
text. In edit mode, the portlet displays the preferences and lets you change them. In
view mode, the portlet displays the image; it knows which one to display based on the
preferences. In the simple case, one of the preferences is the URL of the image to
show. In the more complicated case, one of the preferences is the URL of a page that
contains the image, and another preference is a regular expression used to extract the
URL of the image from the web page. Either way, in view mode, the image displays.

 The ImagePortlet class isn’t the only thing that you need to display the image.
The code defers to JSPs for the display, and the ImageBean gets passed to the JSPs.

10.2.2 Coding the JSP-related source files

Before we describe the JSPs, we present the ImageBean containing the data the code
passed to the JSPs. Once you know what that data is, we can present the JSPs.
CODING THE IMAGEBEAN

The ImageBean contains all the data that the portlet passes to the JSPs. We keep all the
model data in a single bean to keep the example simple although, in real life, you
might want to use multiple beans. The source for the bean is shown in listing 10.4.

package com.manning.jbia.portlet;
public class ImageBean {
 private String url;
 private String link;
 private String regex;
 private String title;
 private String action;
.<<getters and setters here>>
}

Table 10.2 describes how each property is used. The Mode column indicates if the
property is used in the view or edit JSP.

Listing 10.4 ImageBean.java

Table 10.2 ImageBean properties

Property Mode Description

url view, edit In edit mode, this is the URL, either for a web page or for an image, entered
by the user. In view mode, this is the URL of the image.

link view The URL used for the hyperlink to the image when displayed in view mode.
Always corresponds to the URL entered by the user in edit mode.

276 CHAPTER 10 The JBoss Portal and portlets
Now that you know what data is supplied to the JSPs, we can describe each of the JSPs.
THE VIEW MODE JSP

Figure 10.6 illustrates the view mode of
the Image portlet, showing the pop-up
help text that appears when you hover
over the image.

 The code for view.jsp is shown in list-
ing 10.5.

<%@ page session="false"%>
<%@ taglib prefix="f" uri="http://java.sun.com/jsp/jstl/fmt"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<center>
 <a href="${image.link}" title="<f:message key='tip.link'/>"
 target="_new">

</center>

The JSP uses the JSP expression language to obtain data from the bean—for example,
${image.link} as the href value for the anchor tag. The page uses the f:message tag
to provide localized text from the message properties file defined in the web.xml file.
The style property for the img tag prevents the image from being outlined because
it’s a hyperlink.

 It’s short and simple—thanks to the ImageBean, the expression language, and
JSTL.
THE EDIT MODE JSP

Figure 10.7 illustrates the edit form displayed to the user and shows a help tip for the
Regular Expression input field.

regex edit The regular expression used to extract the image from a web page.

title edit The title used when displaying the image.

action edit The value for the form action.

Listing 10.5 view.jsp

Table 10.2 ImageBean properties (continued)

Property Mode Description

Figure 10.7 The edit mode for the Image portlet, showing the tooltip for the
Regular Expression field

Figure 10.6 The view mode for the Image portlet,
showing the tooltip for the image

277Creating a portlet
The JSP code, shown in listing 10.6, uses the expression language to obtain data from
the bean and the f:message tag to provide localized text from the message properties
file defined in the web.xml file. Because the portlet determines the form’s action URL
and supplies it as one of the bean’s properties (the form’s action is ${image.action})
and because all data is provided via a bean, you don’t need to declare the portlet
tag library.

<%@ taglib prefix="f" uri="http://java.sun.com/jsp/jstl/fmt"%>
<form action="${image.action}" method="post">
<table>
 <tr>
 <td><f:message key="label.title" /></td>
 <td><input type="text" size="60" name="title"
 title="<f:message key='tip.title' />" value="${image.title}"/>
 </td>
 </tr>
 <tr>
 <td><f:message key="label.url" /></td>
 <td><input type="text" size="60" name="url"
 title="<f:message key='tip.url' />" value="${image.url}" />
 </td>
 </tr>
 <tr>
 <td><f:message key="label.regex" /></td>
 <td><input type="text" size="60" name="regex"
 title="<f:message key='tip.regex' />"
 value="${image.regex}" escapeXml="false" />
 </td>
 </tr>
 <tr>
 <td> </td>
 <td><input type="submit" name="submit"
 value="<f:message key='button.submit' />" />
 <input type="submit" name="cancel"
 value="<f:message key='button.cancel' />" />
 </td>
 </tr>
</table>
</form>

This listing is definitely longer than the view JSP, but it’s still simple. It creates a two-
column table with field labels in the first column and input fields in the second col-
umn. Because there’s no hardcoded text anywhere, it’s easily localized.
THE HELP MODE JSP

Figure 10.8 illustrates what’s displayed to the user when the Image portlet is in help
mode.

Listing 10.6 edit.jsp

Figure 10.8 The help mode for
the Image portlet, providing help
text for the edit form

278 CHAPTER 10 The JBoss Portal and portlets
The JSP code shown in listing 10.7 relies on the f:message tag to show localized text.

<%@ page session="false"%>
<%@ taglib prefix="f" uri="http://java.sun.com/jsp/jstl/fmt"%>
<p><f:message key="help.intro" /></p>

 <f:message key="help.option1" />
 <f:message key="help.option2" />

<p><f:message key="help.table" /></p>
<table border="1" cellpadding="2px">
 <tr>
 <th><f:message key="help.table.subject" /></th>
 <th><f:message key="help.table.url" /></th>
 <th><f:message key="help.table.regex" /></th>
 </tr>
 <tr>
 <td><f:message key="help.table.subject.1" /></td>
 <td><f:message key="help.table.url.1" /></td>
 <td><f:message key="help.table.regex.1" /></td>
 </tr>
</table>

Once again, this listing creates a simple and easily localizable (thanks to the tag
library) JSP.

 All the JSPs use the f:message tag from the JSTL to display localized text. The mes-
sage.properties file contains that text; let’s look at that next.
THE MESSAGE.PROPERTIES FILE

The message.properties file, shown in listing 10.8, is referenced by both the web.xml
and portlet.xml files. Only the web.xml reference is required by the JSTL; the port-
let.xml file reference exists so that the portlet Java code can also access localized text.

label.url=Image URL
label.regex=Regular Expression
label.title=Image title
tip.url=Enter URL for an image, or a page that contains an image.
tip.regex=Enter regular expression to extract image from a Web page.
tip.title=Enter the title for the image.
tip.link=Click the picture to view the Web page.
button.submit=Submit
button.cancel=Cancel
help.intro=This portlet displays an image from the Web. Either:
help.option1=Give a URL for the image and leave regex field blank.
help.option2=Give a URL for Web page and a regex to extract image.
help.table=For the second option, here are some example:
help.table.subject=Subject
help.table.url=URL
help.table.regex=Regular Expression
help.table.subject.1=Astronomy Picture of the Day
help.table.url.1=http://antwrp.gsfc.nasa.gov/apod/astropix.html
help.table.regex.1=<IMG SRC="(image/\\d*/\\S*.jpg)"

Listing 10.7 help.jsp

Listing 10.8 message.properties

279Creating a portlet
If you copy this file as, for example, message_de.properties and translate the text to
German, anyone with a browser set to German as the preferred language will automat-
ically see the German text.

 You’re familiar with the web.xml file, but what’s this portlet.xml file that we men-
tioned? Glad you asked! Let’s look at that file and the other portlet descriptors next.

10.2.3 Understanding the portlet descriptors

What do you have so far? You have the portlet, the JSPs the portlet uses to display
things, the ImageBean used to pass data to the JSP, and a properties file for the dis-
played text. You have all the code you need for the portlet. Let’s turn our attention
toward the files needed to configure or describe the portlet. Yes, like many other Java
technologies, the code to do the work isn’t sufficient. You must also provide a descrip-
tor that the portal container can use to deploy the portlet.

 A variety of descriptor files are used for a portlet. One is defined by JSR-168, some
are required for all web applications, and the rest are specific to the JBoss Portal. We
present the contents and describe each file. In addition, all of these files are covered
in detail in the documentation that comes with the JBoss Portal.
THE PORTLET.XML DESCRIPTOR FILE

The portlet.xml file is the standard portlet descriptor file defined by JSR-168. Listing 10.9
shows the entire file, but we don’t go into great detail on its contents because both the
JSR-168 specification and the Portal documentation cover the contents in detail. But we
do highlight key nodes within the file.

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app
 xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
 version="1.0">
 <portlet>
 <portlet-name>ImagePortlet</portlet-name>
 <display-name>Image Portlet</display-name>
 <description>Displays an image from the Web.</description>

 <portlet-class>
 com.manning.jbia.portlet.ImagePortlet</portlet-class>
 <init-param>
 <name>jsp-view</name>
 <value>/WEB-INF/jsp/view.jsp</value>
 </init-param>
 <init-param>
 <name>jsp-help</name>
 <value>/WEB-INF/jsp/help.jsp</value>
 </init-param>
 <init-param>
 <name>jsp-edit</name>
 <value>/WEB-INF/jsp/edit.jsp</value>
 </init-param>

Listing 10.9 The portlet.xml file for the Image portlet

280 CHAPTER 10 The JBoss Portal and portlets
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>VIEW</portlet-mode>
 <portlet-mode>EDIT</portlet-mode>
 <portlet-mode>HELP</portlet-mode>
 </supports>
 <resource-bundle>
 com.manning.jbia.portlet.message</resource-bundle>
 <portlet-info>
 <title>Image Portlet</title>
 </portlet-info>
 <portlet-preferences>
 <preference>
 <name>title</name>
 <value>Red Hat Logo</value>
 </preference>
 <preference>
 <name>url</name>
 <value>http://www.redhat.com/g/chrome/logo_rh_home.png</value>
 </preference>
 <preference>
 <name>regex</name>
 <value></value>
 </preference>
 </portlet-preferences>
 </portlet>
</portlet-app>

Table 10.3 highlights key nodes from the portlet.xml file.

Table 10.3 Key portlet.xml file nodes

Node Description

<portlet-name> The name of the portlet. Used in various locations to reference this
portlet.

<display-name> The name displayed in the Admin portlet.

<description> Brief text that describes the portlet. Also displayed in the Admin portlet.

<init-param> Initialization parameters for the portlet. In this example, the JSP file-
names for the various display modes are given.

<supports> Identifies the type of output provided by the portlet (text/html, in this
case) and which display modes the portlet handles.

<resource-bundle> Identifies the resource bundle used for localized text.

<portlet-info> The title for the portlet window. Note that the Image portlet overwrites
this.

<portlet-preferences> The portlet preferences. Unlike the initialization parameters, which are
read-only, the preferences can be updated by the portlet, usually in
response to user input in edit mode. We could omit the regex prefer-
ence. But by providing it, it becomes available in the Admin portlet when
managing portlet instances and can be overridden in the portlet-
instances.xml file, which we cover later.

281Creating a portlet
Now let’s move on to the next descriptor file, web.xml.
THE WEB.XML DESCRIPTOR FILE

The web.xml file, shown in listing 10.10, is a standard deployment descriptor used
with web applications and, for most portlets, is empty. Because the Image portlet uses
JSTL, we declare the message properties file and also the 2.5 version of the servlet
specification, simplifying the use of the expression language in the JSPs.

<?xml version="1.0" encoding="UTF-8"?>
<web-app
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">
 <context-param>
 <param-name>
 javax.servlet.jsp.jstl.fmt.localizationContext</param-name>
 <param-value>com.manning.jbia.portlet.message</param-value>
 </context-param>
</web-app>

You’ve now seen both of the standard descriptor files. The rest of the descriptor files
are specific to the JBoss Portal.
THE JBOSS-APP.XML DESCRIPTOR FILE

The jboss-app.xml file, shown in listing 10.11, defines the name of the portlet applica-
tion. This name is used, along with the portlet name, as part of the identification
string for the portlet.

<jboss-app>
 <app-name>image</app-name>
</jboss-app>

If you don’t provide this file with an <app-name> node, the context name is used
within the portlet id. For example, if the Image portlet is packaged in a WAR file
named image.war, then the text /image is used as part of the portlet id. This point
might not appear to be important now, but you’ll appreciate the distinction when you
use the Admin portlet to manage the portlet. Additionally, by providing an applica-
tion name here, you effectively separate the portlet name from that of the WAR file.

 The Document Type Definition (DTD) file that describes the layout of the jboss-
app.xml file can be found at core/src/resources/dtd/jboss-app_2_0.dtd in the source
download for the Portal.
THE PORTLET-INSTANCES.XML DESCRIPTOR FILE

The portlet-instances.xml file, shown in listing 10.12, describes instances of the port-
let. In this case, no instances are declared. You can omit this file and the portlet still
deploys.

Listing 10.10 web.xml

Listing 10.11 jboss-app.xml

282 CHAPTER 10 The JBoss Portal and portlets
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<deployments>
</deployments>

The DTD file can be found at core/src/resources/dtd/portlet-instances_2_0.dtd in
the source download for the Portal. We return to this file in section 10.3 when we
declare a portlet instance.
THE *-OBJECT.XML DESCRIPTOR FILE

The *-object.xml file, shown in listing 10.13, describes portlet objects such as the win-
dows used to display the portlet instances. The recommended convention is to use the
portlet application name in this filename; therefore, the file is named image-
object.xml. But the name is irrelevant; you could name the file foobar-object.xml, and
it would work fine. In addition, you can have multiple *-object.xml files.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<deployments>
</deployments>

Because no instances are declared in the portlet-instances.xml file, you don’t need to
declare anything in this file. If you omit this file, the portlet still deploys. Unfortu-
nately, there’s no DTD or XML Schema Definition language (XSD) file that describes
the *-object.xml file. We return to this file in section 10.4 when we place the portlet
on a page.

 We could also provide a jboss-web.xml file, but because it doesn’t play a role in the
example Image portlet, we omit it.

 Now what do you have? You have the portlet code, including JSPs, and you have the
descriptor files. Therefore, you have the entire set of source files that you need to
build the portlet.

10.2.4 Building and deploying the portlet

We need to warn you about an issue that you probably won’t encounter when you
deploy your own portlets, but one that occurs because we show how to configure the
Image portlet in several steps, deploying it after each step. When a portlet is deployed,
the Portal updates the database with the portlet deployment information. In the course
of this chapter, we ask you to deploy the same Image portlet with a variety of different
deployment descriptors. Each time the Image portlet is deployed, we assume that it
wasn’t deployed before. Therefore, you’ll have to clean out the database between each
Image portlet deployment. One way to do this it to stop the application server, drop the
database and create it again, and then start the application server up again. The Ant
script that comes with the source distribution does this for you, and contains ample
documentation to explain how to use it. In a real environment, you wouldn’t have to
clean out the database because you’d deploy with the proper configuration to begin

Listing 10.12 portlet-instances.xml

Listing 10.13 image-object.xml

283Creating a portlet instance
with. If you want to change the configuration after
deploying, the Portal provides various management
tools that make this easy, as you’ll see in the course
of this chapter and the next. With this caveat in mind,
let’s continue.

 You package a portlet within a WAR file. Figure 10.9
illustrates the directory hierarchy for the image.war file.

 Copy the WAR file to the deploy directory of the
server to deploy the portlet. At this point, the portlet is
ready for use in the portal.

 Now that the portlet has been deployed, you might
wonder where it is. It doesn’t appear anywhere, even if
you refresh the portal page. You can’t see the portlet
based on what we’ve told you so far because you’ve not
yet created a portlet instance or a portlet window.

10.3 Creating a portlet instance
You can create an instance either by providing instance information in the portlet-
instances.xml file or by using the Admin portlet. We explain both. Which is the best to
use? We recommend that you provide a default configuration in the portlet-
instances.xml file, and then, if necessary, fine tune it in the Admin portlet. Let’s look
at using the portlet-instance.xml file first.

10.3.1 Creating an instance using the portlet-instance.xml file

The portlet-instances.xml file is used to identify one or more instances of a portlet. The
portlet-instances.xml file shown in listing 10.14 creates a single instance of the Image
portlet.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<deployments>
 <deployment>
 <instance>
 <instance-id>ImagePortletInstance</instance-id>
 <portlet-ref>ImagePortlet</portlet-ref>
 </instance>
 </deployment>
</deployments>

The name of the instance created is ImagePortletInstance, which is an instance of the
portlet named ImagePortlet. The <portlet-ref> node must match the <portlet-
name> node in the portlet.xml file. The instance name must be unique among all portlet
instances. The name can contain any characters including special characters and spaces.

 The resulting image.war file has the same set of files as mentioned earlier. When
the WAR file is deployed, the instance gets created. See the warning at the start of sec-
tion 10.2.4 before deploying the WAR file.

Listing 10.14 Declaring an instance in portlet-instances.xml

Figure 10.9 Image portlet WAR
file directory hierarchy

284 CHAPTER 10 The JBoss Portal and portlets
10.3.2 Creating an instance using the Admin portlet

Alternatively, you can use the Admin portlet to create an instance. Figure 10.10 illus-
trates this progression through the Admin portlet.

Click the Portlet Definitions tab on the top of the Admin portlet window, and a list of
deployed portlets is displayed. The portlets are displayed in alphabetical order by id,
so the Image Portlet should be easy to find. In the Actions column, click the Create
Instance link and fill in the instance name, such as ImagePortletInstance, on the result-
ing form. Click the Create Instance button.

 You can create multiple instances of the portlet by repeating these steps, each time
supplying a different name.

 Even after creating a portlet instance, you’ll notice that the Image portlet isn’t visi-
ble. Only one more task is left—declaring the portlet window—and you’ll see what
you’ve been patiently looking for.

10.4 Declaring a portlet window
To display a portlet, you must first create an instance and then place it on a page. The
previous section covered creating the instance. This section covers how to put that
instance on a page—also known as defining a portlet window.

 Once again, you can do this in two ways. If you prefer configuration files, you can
describe the portlet window, or object, using the *-object.xml file. And if you prefer
user interfaces, you can use the Admin portlet. We recommend providing a default
configuration in the *-object.xml file, and then, if necessary, fine tuning it in the
Admin portlet. We discuss the *-object.xml method first.

10.4.1 Declaring a portlet window using the *-object.xml file

The *-object.xml file defines portlet windows that display portlet instances. This file
declares the portal, page, and location on the page for the portal window—also known
as the portal object. If you change the image-object.xml file as shown in listing 10.15, then
the Image portlet instance appears at the bottom of the portal home page.

Figure 10.10 The illustrated steps to create a portlet
instance. Select Portlet Definitions, and then click the
Create Instance action for the Image Portlet entry.

285Declaring a portlet window
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<deployments>
 <deployment>
 <if-exists>keep</if-exists>
 <parent-ref>default.default</parent-ref>
 <window>
 <window-name>ImagePortletWindow</window-name>
 <instance-ref>ImagePortletInstance</instance-ref>
 <region>center</region>
 <height>1</height>
 </window>
 </deployment>
</deployments>

Table10.4 describes the nodes in this file.

Package this file into the image.war file, and when the WAR is deployed, the instance
gets created and placed on the default page of the default portal. See the warning at
the start of section 10.2.4 before deploying the WAR file. Now, when you go to the por-
tal in your browser, you should see the Image portlet. Finally!

10.4.2 Declaring a portlet window using the Admin portlet

In section 10.3.2, you created an instance of the Image portlet using the Admin port-
let. In this section, you place that instance on a page.

Listing 10.15 Image-object.xml file with location information

Table 10.4 Descriptions of the nodes in the *-object.xml file

Node Description

<if-exists> Indicates what to do if the instance already exists. The value overwrite
means to use the new data provided in the file. The value keep means to keep
the existing instance configuration and ignore the new configuration in the file.
Note that all portal information is maintained in the database, so this directive
describes how the content of this file interacts with the current database con-
tents. Experience has shown that overwriting isn’t perfect, hence our warning in
section 10.2.4 concerning redeploying the portlet.

<parent-ref> Defines the location of the portlet instance on the page. The value is a two-part,
dot-separated name. The first part identifies the portal name, and the second
part identifies the page name. In our example, the instance shows up on the
default page of the default portal.

<window> The subnodes of this node define how the portlet window appears on the page.

<window-name> Defines the name that can be used to identify the portlet window. The name
must be unique among the window names on the page.

<instance-ref> This matches the <instance-id> defined in portlet-instances.xml.

<region> Identifies where on the page the portlet window appears. The values allowed
depend on the layout manager for the portal. The default layout manager
accepts the values left and center.

<height> Identifies the relative location of this portlet window with the other portlet windows.
Lower-numbered portlet windows appear above higher-numbered portlet windows.

286 CHAPTER 10 The JBoss Portal and portlets
 In the Admin portlet, click the Portal Objects tab. The Admin portlet shows a table
containing the defined portals, which are Admin, Default, and Template. The names
are links, so click Default, as shown in figure 10.11.

The table now contains the names of the pages in the Default Portal; these pages are
News, Weather, and Default. Notice that breadcrumbs, which identify where you are
in the portal definition hierarchy, appear above the table. Once again, the page
names are links, so click Default, as shown in figure 10.12.

The table now lists the portlet windows defined on that page. Click the Page Layout
link that appears below the breadcrumbs, as shown in figure 10.13.

 Two panels are displayed—Content Definition and Page Layout. The Page Layout
panel lists the Windows in each region, Center and Left, and provides buttons to man-
age the region. The Content Definition panel contains a field where you can supply

Figure 10.11 Creating a
portlet window. Step 1:
Choose the Default Portal.

Figure 10.12 Creating a
portlet window. Step 2:
Choose the Default Page.

Figure 10.13 Creating a portlet window. Step 3: Display the Page Layout for the
Default Page.

287Declaring a portlet window
the name for a new instance, a drop-down box for the type of content to add, and
then a list of items that match the content type. If the Content Type is Portlet, then
the portlet instances are shown. To create a portlet window, type in a name and click
the desired portlet instance, ImagePortletInstance in this case. Note that the page
refreshes when you select a portlet instance, and details about the selected instance
appear above the list of instances. In addition, the selected instance is highlighted. In
the Page Layout panel, click the Add button for the Center Region, as shown in figure
10.14. When the page refreshes, the new portlet window appears in the list as shown
in the overlay in figure 10.14.

To view the Image portlet, click the Portal link in the right side of the header, as shown
in the upper portion of figure 10.15, and the portal home page displays. The Image port-
let is visible at the bottom of the page, as shown in lower portion of figure 10.15.

 Our effort to create a portlet and display it in the portal is now complete.

Figure 10.14 Creating a portlet window. Step 4: Create the portlet window from the portlet instance.

Figure 10.15 Viewing the results after
creating the portlet window. The Image
portlet is at the bottom of the page.

288 CHAPTER 10 The JBoss Portal and portlets
10.5 Summary
This chapter provided a brief introduction into portals and portlets. We presented the
following:

■ A brief description of portals and portal terminology
■ A brief overview of the features provided by the JBoss Portal
■ Instructions for installing the JBoss Portal, including configuring the MySQL

database for use with the Portal
■ An example portlet that used JSPs and JSTL to display an image to the user
■ How to use the various configuration files to deploy a portlet, create a portlet

instance, and display the portlet on a page
■ How to use the Admin portlet to create a portlet instance and display the port-

let on a page

In the next chapter, we show some of the features of the JBoss Portal, such as security
and the CMS. And don’t forget about the portlet you created in this chapter; you’ll
need it.

10.6 References
JSR-168 specification—http://jcp.org/en/jsr/detail?id=168
JBoss Portal documentation—http://labs.jboss.com/jbossportal/docs/index.html
Stefan Hepper, et al., Portlets and Apache Portals, Manning, 2005—http://www.manning.com/

hepper/

http://jcp.org/en/jsr/detail?id=168
http://labs.jboss.com/jbossportal/docs/index.html
http://www.manning.com/hepper/
http://www.manning.com/hepper/

Configuring
 the JBoss Portal
In the previous chapter, you developed a simple Image portlet and deployed it to
the portal. In this chapter, we describe various configuration topics including secu-
rity and the CMS.

 If you’re new to portals and portlets and haven’t read through chapter 10, “The
JBoss Portal and portlets,” we urge you to do so now. In that chapter, we define
many terms and present many portal concepts that aren’t repeated here.

 We use the Image portlet from chapter 10 to illustrate several of the topics in
this chapter. These topics include configuring the appearance of the portlet win-
dow, working with multiple portlet instances, and securing the portal and portlets.
Along the way, we also cover the CMS that comes with the Portal. We conclude the

This chapter covers
■ Configuring window appearance
■ Working with multiple windows and instances
■ Working with the CMS portlet
■ Securing the Portal
■ Developing a custom portal
289

290 CHAPTER 11 Configuring the JBoss Portal
chapter by developing and deploying a customized portal. This final topic makes use
of many of the capabilities that you’ll learn in this chapter, and helps you personalize
the portal for your use.

11.1 Configuring window appearance
We left off in the previous chapter having finally displayed the Image portlet in a portlet
window on the default page. The Image portlet window has a border and title bar. This
appearance is controlled by the renderer defined for the portlet. The two basic render
sets that ship with the Portal are the div renderer, which displays the border and title
bar, and the empty renderer, which doesn’t. In addition, there are AJAX-capable varia-
tions of each renderer, but the AJAX capabilities don’t influence the window appear-
ance. We don’t cover the AJAX capabilities of the Portal in this book, but you can read
about them in the Portal Reference Guide.

 The renderers are defined in the file jboss-portal.sar/portal-core.war/WEB-INF/
layout/portal-renderSet.xml. If you look at this file, you’ll note that each renderer
identifies classes that participate in the rendering of a portlet window. You could pro-
vide your own rendering classes and your own render sets. In this section, we focus
our discussion on the default render sets that come with the Portal.

 The Portal provides fine-grained control over the window rendering. The best way
to illustrate this point is to use the Admin portlet to change the renderer used for the
Image portlet window. Log in as admin, and on the Admin page with the Portal
Objects tab selected, click Default portal, and then the Default page. Click the Theme
link next to the ImagePortletWindow. These steps are illustrated in figure 11.1.

 The three renderers can each be configured by selecting one of five rendering
options. The Default option uses the renderer inherited from the parent—in this
case, from the page. Although there are eight combinations (ignoring the default
option because it uses the inherited renderer and ignoring the AJAX-related options
because they don’t affect the appearance), they result in only three usable appear-
ances of the window, as illustrated in table 11.1.

 You might wonder why anyone would want to use different renderers. If the portlet
provides an edit mode and you want your users to be able to edit the preferences, then

Table 11.1 Portlet window appearances for various renderers

Window renderer divRenderer emptyRenderer divRenderer

Decoration renderer divRenderer emptyRenderer emptyRenderer

Portlet renderer divRenderer emptyRenderer emptyRenderer

Description Full window title and border No title or border Empty window title with border

291Configuring window appearance
you should choose the option with the full window title and border. An example of this
is the Weather portlet. If you want only the view mode visible, then you should choose
the option with no title or border. An example of this is the CMS content that appears
in the center panel of the Default portal home page. If you want to provide a frame
around the portlet but prevent the user from editing, minimizing, or maximizing the
portlet, then you should choose the option with the empty window title with border.

11.1.1 Configuring window appearance using *-object.xml

You can also set the renderers in the *-object.xml file—the preferred way of defining
the renderers because you typically know at development time how you want the port-
let window rendered.

 The Image portlet displays the Red Hat logo in a window in the center panel of the
portal window. But you might want to display the logo without any borders or title in
the left panel. To do this, update the image-object.xml file as shown in listing 11.1.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<deployments>
 <deployment>
 <if-exists>keep</if-exists>
 <parent-ref>default.default</parent-ref>

Listing 11.1 Setting the window decorations in *-object.xml

Figure 11.1 To change the portlet window renderer, click through Portal and Page to get to
the list of portlet windows, and then click the Theme link next to the desired portlet window.

292 CHAPTER 11 Configuring the JBoss Portal
 <window>
 <window-name>ImagePortletWindow</window-name>
 <instance-ref>ImagePortletInstance</instance-ref>
 <region>left</region>
 <height>99</height>
 <properties>
 <property>
 <name>theme.windowRendererId</name>
 <value>emptyRenderer</value>
 </property>
 <property>
 <name>theme.decorationRendererId</name>
 <value>emptyRenderer</value>
 </property>
 <property>
 <name>theme.portletRendererId</name>
 <value>emptyRenderer</value>
 </property>
 </properties>
 </window>
 </deployment>
</deployments>

Package this file into the image.war file, and when the WAR is deployed, the portlet
window gets created and placed at the bottom of the left panel on the Default page of
the Default portal. Now, when you go to the portal in your browser, you should see the
logo without any title or borders at the bottom of the left panel of the window. See the
warning at the start of section 10.2.4 before deploying the WAR file.

 Notice that, without the title bar, the user doesn’t have access to the Help or Edit
button. The only way to change the image displayed is to log in as an administrator
and change the preferences for the instance in the Admin portlet.

 Up to this point, you’ve displayed the image in various locations on the page and
rendered the window in a variety of ways. But you might want to show multiple images
on the same page. For example, your website might use a variety of open source proj-
ects, and you’d like to acknowledge their use by displaying their “powered by” or “built
by” icons. Let’s look at how to display multiple windows for the same portlet next.

11.2 Working with multiple windows and instances
Try this. Using the Admin portlet, create two portlet windows for the Weather portlet
on the Weather page of the Default portal. Refer back to section 10.4 if you need help
doing this. Then view the Weather page. Click the Edit icon in the title bar of one of
the Weather portlet windows and change the Zip Code. When you submit the
changed Zip Code, the weather for that portlet changes, but the other portlet still
shows the weather for Miami. So far, so good. Now, log out and log back in. Oops!
Now both Weather portlet windows display the same weather for the new Zip Code!
That’s probably not what you wanted or expected.

 The problem is that a portlet window is a window for a portlet instance; it isn’t an
instance itself. And the portlet instance keeps track of the preference data. When you

Changed lines

New lines

293Working with multiple windows and instances
set the preference data for the instance from one window, the preference data is
picked up by the other window because that window uses the same instance. To be
even more accurate, preference data is stored per user per portlet instance so that
each user can personalize each portlet instance.

 If you want to see the weather from two (or more) locations, you have to first cre-
ate another (or several) Weather portlet instances. We’ll wait while you do this. If you
need a hint, go back to section 10.3. Done? Good. Now remove one of the Weather
portlet windows from the Weather page. To remove a portlet window, go to the Page
Layout view for the page in the Admin portlet, click the portlet window name in the
list box in the Page Layout panel, and click the Delete button. Now add a window for
the second Weather portlet instance and go back to the Weather page. You should be
able to change the Zip Code of one of the Weather portlets without affecting the
other, even if you log out and back in.

11.2.1 Configuring multiple instances
and windows using the descriptor files

We want to place three images on the page. Two of the images—the Red Hat and
JBoss logos—go at the bottom of the left column. Additionally, we want the astronomy
picture of the day displayed on the Default page.

 You should know how to place the images already. Recall that you can use the por-
tal-instances.xml file to declare the three instances, one for each of the images. Also,
you can use the *-object.xml file to position the portlet windows on the page.
Although we previously showed only one instance and window, you should be able to
easily figure out multiple instances and windows. But we haven’t covered one area:
how to change the preferences so that each window displays something different. So
far, the preferences have appeared only in the portlet.xml file, which describes the
portal itself, not the instances.

 You can use the portlet-instance.xml file to override the default preference settings
declared in portlet.xml. Note that you can’t add new preferences, only override ones
already declared. The full portlet-instance.xml file that contains the three desired
Image portlet instances is given in listing 11.2.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<deployments>
 <deployment>
 <instance>
 <instance-id>RedHatLogoInstance</instance-id>
 <portlet-ref>ImagePortlet</portlet-ref>
 </instance>
 </deployment>
 <deployment>
 <instance>
 <instance-id>JBossLogoInstance</instance-id>
 <portlet-ref>ImagePortlet</portlet-ref>

Listing 11.2 Declaring multiple portlet instances

First instance
with RedHat logo

B

Second instance
with JBoss logo

C

294 CHAPTER 11 Configuring the JBoss Portal
 <preferences>
 <preference>
 <name>url</name>
 <value>http://www.jboss.com/themes

➥ /jbosstheme/img/logo.gif\</value>
 </preference>
 </preferences>
 </instance>
 </deployment>
 <deployment>
 <instance>
 <instance-id>AstronomyInstance</instance-id>
 <portlet-ref>ImagePortlet</portlet-ref>
 <preferences>
 <preference>
 <name>title</name>
 <value>Astronomy Picture of the Day</value>
 </preference>
 <preference>
 <name>url</name>
 <value>http://antwrp.gsfc.nasa.gov/apod

➥ /astropix.html</value>
 </preference>
 <preference>
 <name>regex</name>
 <value>IMG SRC="(image/\d*/\S*.jpg)"</value>
 </preference>
 </preferences>
 </instance>
 </deployment>
</deployments>

Notice that the first instance B is declared without any preferences because it inherits
the default preferences defined in the portlet.xml file. For the second instance C,
you define a different url preference. You don’t redefine the title preference
because this instance is rendered without a border, hiding the title. For the third
instance D, you set all the preferences.

 That takes care of the instances; now let’s look at the *-object.xml file which
describes the window locations, as given in listing 11.3.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<deployments>
 <deployment>
 <if-exists>keep</if-exists>
 <parent-ref>default.default</parent-ref>
 <window>
 <window-name>RedHatLogoWindow</window-name>
 <instance-ref>RedHatLogoInstance</instance-ref>
 <region>left</region>
 <height>98</height>
 <properties>
 <property>

Listing 11.3 Declaring multiple portlet windows/objects

Second instance
with JBoss logo

C

Third instance with
astronomy picture

D

Red Hat logo
on default page

295Working with the CMS portlet
 <name>theme.windowRendererId</name>
 <value>emptyRenderer</value>
 </property>
 <property>
 <name>theme.decorationRendererId</name>
 <value>emptyRenderer</value>
 </property>
 <property>
 <name>theme.portletRendererId</name>
 <value>emptyRenderer</value>
 </property>
 </properties>
 </window>
 </deployment>
 <deployment>
 <if-exists>keep</if-exists>
 <parent-ref>default.default</parent-ref>
 <window>
 <window-name>JBossLogoWindow</window-name>
 <instance-ref>JBossLogoInstance</instance-ref>
 <region>left</region>
 <height>99</height>
 *** same properties as above ***
 </window>
 </deployment>
 <deployment>
 <if-exists>keep</if-exists>
 <parent-ref>default.default</parent-ref>
 <window>
 <window-name>AstronomyWindow</window-name>
 <instance-ref>AstronomyInstance</instance-ref>
 <region>center</region>
 <height>99</height>
 </window>
 </deployment>
</deployments>

To display the Red Hat and JBoss logos without any borders, you define the window
renderer properties for them (to save space in the book, we show the rendering prop-
erties only for the first logo window). Based on the height setting, the Red Hat logo
appears above the JBoss logo. You don’t declare any rendering for the astronomy pic-
ture so that the border shows for it.

 Package these files into the image.war file and when the WAR is deployed, the
instances get created and placed at their respective locations. See the warning at the
start of section 10.2.4 before deploying the WAR file. When you go to the portal in
your browser, you should see the logos at the bottom of the left column of the window
and the astronomy picture in the center column.

11.3 Working with the CMS portlet
The Portal ships with a basic Content Management System (CMS) that you can use to
display static data. In addition, you can use the CMS to provide downloads of binary

Red Hat logo
on default page

JBoss logo on
default page

Astronomy picture
on default page

296 CHAPTER 11 Configuring the JBoss Portal
artifacts such as documents and images. In this section, we show you how to work with
the CMS to accomplish these goals.

11.3.1 Gathering example CMS data

The first thing you need is some data to display within the CMS portlet. The software
download for the book contains some simple files you can use for this purpose.
Because some of the files are binary, it’s difficult to provide listings for them in the
book. But the content is simple, and you can make your own if you like.

 The main file is a simple HTML page, as given in listing 11.4, that references two
documents and a second HTML file, and contains an image.

<html>
<body>
<table border="0">
 <tr>
 <td>Some interesting documents:

 first
 second

 </td>
 <td></td>
 </tr>
 <tr>
 <td colspan="2">Next</td>
 </tr>
</table>
</body>
</html>

Each reference starts with a directory named book, as in book/doc/doc_01.doc,
because later you’ll load this content into a folder named book within the CMS. The
second HTML file, listing 11.5, contains a link back to the first HTML page.

<html>
<body>
 <p>A lot of interesting text.</p>
 <p>Back</p>
</body>
</html>

If you like, you can gather your own documents and your own
image and use those. Either rename your files as referenced in
the HTML page, or change the HTML page to reference your
files. Once you have the files, package them into a zip file so
that the contents are as shown in figure 11.2.

Listing 11.4 CMS content example—index.html

Listing 11.5 CMS content example—two.html

Figure 11.2 Layout of
example CMS zip file

297Working with the CMS portlet
 Now that you have your content, let’s look at how to upload and display it in the
CMS portlet.

11.3.2 Displaying the new content

Log into the portal as admin, go to the Admin portal, and go to the CMS page. The
CMS page contains the CMS Administration portlet, which you can use to manage the
CMS content. Initially, the content consists of a single folder named default. A drop-
down list box presents the possible actions you can perform, including creating a new
folder and uploading a file.

 You need to create another folder and add the content to that folder. To do this,
you complete the following steps:

1 Select the Create Folder action. The page refreshes, displaying a Confirm
Directory Creation form.

2 Name the new folder book, and click the Create button. The page refreshes, dis-
playing the contents of the new book folder, which is empty. Notice that bread-
crumbs at the top of the portlet window indicate how deep you are in the
folder structure.

3 Select the Upload Archive action. The page refreshes, displaying an Upload
Archive form.

Browse for the zip file, and then click the Upload button. When the page refreshes,
you’ll see the two HTML files and the doc and image folders listed.

 These steps and the result are illustrated in figure 11.3.

Figure 11.3 To upload
content into the CMS,
create a new folder for
the content, and then
upload a zip archive. The
bottom image shows the
uploaded content.

298 CHAPTER 11 Configuring the JBoss Portal
Now that you have the content loaded, let’s get the CMS Window to display that content.
 In the Admin portlet, drill down through the Default portal and Default page. Then

click the CMSWindow link. The base CMS content, which consists of the default and
book folders, appears. Notice that the Selected File attribute lists /default/index.html
as the current value. Click the Book folder and then the Index.html file. When the page
refreshes, the Default page contents are displayed again. Log out and log back in, and
the new CMS content appears instead of the default. These steps and the final result are
illustrated in figure 11.4.

 When you click the two document links, you download the documents. The Next
link displays the other page in the CMS portlet window.

 Although this example is simple, we’re
sure that you can easily see the power of
Portal’s CMS capability. You can upload
any static content and easily display it. In
addition, the CMS Administration portlet
provides HTML editing capabilities so
that you can easily make quick modifica-
tions to the content uploaded. The HTML
editor is a bit beyond what we plan to
cover in this chapter, but it’s fairly intui-
tive; you can find documentation for it in
the Quick Start Guide and the User’s
Guide provided with the Portal.

 Hmm. You’ve uploaded an image into
the CMS. The example Image portlet dis-
plays images. What would it take to get the
Image portlet to display images from the
CMS? Perfect segue to the next section!

11.3.3 Accessing CMS content

With the CMS portlet displaying the new con-
tent you loaded in the previous section,
hover over one of the document links and
note the URL, which is shown in figure 11.5.

 From this, you can conclude that the
URL for the image is as follows:

 http://localhost:8080/portal/content/book/image/image.gif

From a portal page, you wouldn’t specify the host or port; you’d use the following rel-
ative URL:

 /portal/content/book/image/image.gif

Figure 11.4 To set the content to display in the
CMS window, drill down to the CMSWindow, click
it, and then drill down to the desired page to display.
The bottom image shows the home page showing
the new contents.

http://localhost:8080/portal/content/book/doc/doc_01.doc

Base URL

Identifies content in CMS

Base folder where content was loaded

RelativeURL
(as seen in HTML page)

Figure 11.5 Example URL used to access
CMS content, with the various parts labeled

299Securing the Portal
Edit the URL for the astronomy Image portlet
window, which you created in section 11.2.
Remove the regular expression, and after
you submit the changes (shown in fig-
ure 11.6), the CMS image is displayed.

 This ability to access CMS content opens
many possibilities. As an example, a depart-
ment’s website might feature a series of
photographs taken at department func-
tions. You could upload those photographs
to the portal and modify the Image portlet to randomly select a photograph to display.

 We’ve shown you how the Image portlet can access an image from the CMS. But a
portlet can as easily access any content in the CMS. For example, you could modify the
Image portlet to include a link to download one of the documents, opening up many
possibilities for interaction between portlets and the CMS. You can directly access any
non-HTML CMS content in this manner, and the content will be returned as is. If you
access an HTML document in the CMS, the Portal displays the document within the
CMS portlet window on the portal page that contains that window—the reason why
there’s only one CMS portlet instance with one window and why you can’t create more
instances or windows.

11.4 Securing the Portal
The Portal requires users to identify themselves, providing access to certain pages only
to certain users and, at the same time, allowing access to other pages to anyone. Let’s
show you how to secure the information you have in the Portal and prevent unauthor-
ized access.

 As with many Java EE applications, the Portal uses role-based security. All users are
assigned one or more roles, and access to content, whether portals or pages, can be
granted to specific roles.

 The Portal uses its database to store account information. When you install the
Portal, two accounts are in this database: admin and user. The User portlet enables
anyone to create a new account in the portal. In this section, we cover user manage-
ment as built into the Portal. Switching to a different login module is a topic that we
leave for you to explore on your own.

 You can easily manage security in the Portal. We don’t walk you through click-by-
click steps; the Reference Guide that comes with the Portal does, and we encourage
you to read the section on security. We do cover creating a new account, managing
roles, and various topics related to access control.

11.4.1 Creating a new account

Any user who can access the User portlet can create an account in the portal by click-
ing the You Can Create An Account link in the User portlet, as shown in figure 11.7.

Figure 11.6 To access the CMS content
from the Image portlet, change the image
URL to reference the image from CMS.

300 CHAPTER 11 Configuring the JBoss Portal
 Once you’re logged in, click the Edit Profile tab in
the User portlet to edit your profile. You personalize
the Portal by specifying the desired theme, language,
and various other preferences. The user profile win-
dow is also where you change the password for the
admin account after you’ve logged in as admin.

 If you don’t want users to create accounts, you
could remove the User portlet from the home page.
An administrator can still create and manage accounts via the Members page on the
Admin portal, but the user won’t be able to edit her preferences. An alternate solution
is to edit the User portlet so that it doesn’t display the You Can Create An Account link.
To do this, edit the jboss-portal.sar/portal-identity.sar/portal-identity.war/WEB-INF/
jsf/register/overview.xhtml file; look for the identifier IDENTITY_CREATE_ACCOUNT and
remove the <h:commandLink> tag containing it.

11.4.2 Managing roles

The portal comes with the three following built-in roles:

■ Admin —Administrative role that allows users to access the Admin portal and
perform functions such as defining the portal layout, assigning access control,
and adding CMS content

■ User —Standard non-administrative role for other users
■ Unchecked —Default role that gets applied if the user doesn’t fit into any other role

The Admin role contains only the admin account, and the User role contains only the
user account. When an account is created, it automatically goes into the User role.

 You can add new roles by using the Role Management tab on the Members page in
the Admin portal. Once you create roles, you can add members, or user accounts, to
the roles.

 To add members to a role, you go to the Role Management tab on the Members page
of the Admin portal, shown in figure 11.8. You might think that the best way to add users
to a role is to click the Members tab next to the role, but if you do that, users that already
have that role are displayed. For a newly created role, no users are displayed. Instead,

Figure 11.8 To add users to a
role, click the Members link for
the User role. This lists all users,
which you can then assign to the
desired roles.

Figure 11.7 Click the You Can
Create An Account link to create
a new account.

301Securing the Portal
click the Members tab next to the User role. All users are displayed. Once the users are
displayed, clicking the Roles link displays a page that lets you select the roles for the user.

 Now that you have a basic understanding of creating users and assigning them
roles, let’s look at how to define access control.

11.4.3 Understanding access control

Access control is primarily page based. A given user can interact with a particular page
if the user is in a role that has the required rights to the page. The most direct way of
assigning access control is via each page in the portal. The two basic access control set-
tings are as follow:

■ View —Allows the user to view the page
■ Personalize—Allows the user to view and personalize the page

Let’s concentrate on view access and discuss personalize access later.
 In addition to the two basic access control settings, each can have a recursive modi-

fier, meaning that the access control setting applies to all nested objects as well. For
example, you can indirectly allow access to all the pages in a portal by specifying the
view recursive access control for a given role. In this case, every user in that role has
access to all pages in the portal, regardless of the access control settings on the indi-
vidual pages.

 We just touched on an important topic; although you can grant access, you can’t
withdraw access. For example, if you grant recursive view access to a portal to a spe-
cific role, you can’t disallow access to any specific page in the portal to any users in
that role. You should, therefore, carefully consider what access rights you want to
grant and set access control accordingly. You’ll find that page-level access control
makes the most sense if you want to restrict any pages, whereas portal access control
works well if you want to grant global access.

 As an example, consider the portal named PortalA whose access control is illus-
trated in figure 11.9.

Figure 11.9 Portal access control example. Users in Role1 have full access to the portal,
but other users not in that role might not have access.

302 CHAPTER 11 Configuring the JBoss Portal
Table 11.2 defines the full access rights for the portal (note that the first row matches
the rights illustrated in figure 11.9) and its pages. An empty cell denotes that no
access control is specified for that combination. For this example, we ignore the User,
Admin, and Unchecked roles.

Table 11.3 indicates which pages in PortalA a user in a specific role can view.

In addition, you can observe the following behaviors:

■ Tabs appear in the header only for those pages to which the user has access.
■ With Page1 as the default page, only users in Role1 can access the portal using

the portal URL http://localhost:8080/portal/auth/portal/PortalA because
only those users have access to both the portal and its default page.

■ To access Page2, a user who’s only in Role4 must use a URL that includes the
page name http://localhost:8080/portal/auth/portal/PortalA/Page2. This
user can’t use the portal URL because he doesn’t have access to the default
page. The same is true for users in Role3 who wish to access page Page1.

■ If a user is a member of multiple roles, and if any of those roles has access, the
user has access.

■ Users in Role2 don’t have access to any pages because they’re granted only view
access and only at the portal level. That access isn’t recursively applied to the
pages in the portal.

Table 11.2 Portal access control example: access control

Object Role

Role1 Role2 Role3 Role4 Role5

PortalA View Recursive View

Page1 View

Page2 View Recursive

Page3

Table 11.3 Portal access control example: page access

Page Role

Role1 Role2 Role3 Role4 Role5

Page1 Yes No Yes No No

Page2 Yes No No Yes No

Page3 Yes No No No No

303Securing the Portal
You should now understand how to set up access rights for portal pages based on
which roles you want to access which pages. So far we‘ve talked about accessing portals
and pages but what about individual portlet windows?
SETTING ACCESS CONTROL FOR PORTLET INSTANCES

Access control doesn’t apply to portlet windows. If the user has view access to the page,
the user can view the portlet window. To restrict access to a portlet, you must go back
to the Portlet Instances list on the Admin portlet. Select one of the instances in the list,
and then click the Security link next to it. You can then indicate which roles have access
to the portlet instance, as is shown for the Image portlet instance in figure 11.10.

Note that this access right applies to all portlet windows defined for that instance. You
usually want to restrict access to the contents displayed in a portlet, and the portlet
instance decides the contents, not the portlet window, which displays those contents.

 What happens if the user has access rights to a page but not to a portlet instance
with a window on that page? It’s simple—the portlet doesn’t display.

 At this time, you should be frantically waving your hand in the air because you
have an important question that we’ve ignored. The question: What gives with the
Unchecked role? It shows up in every list of roles when setting access control. Because
you asked…
UNDERSTANDING THE UNCHECKED ROLE

Your initial guess might be that the Unchecked role applies to users who aren’t logged
in, enabling such users to view various pages. Although that guess is close, it’s not
quite right. The access control defined for the Unchecked role defines the default
access permissions for the component in question.

 Let’s look at an example. In figure 11.10, Unchecked is set to View. By default, all
roles have view access to the Image portlet instance. If you unselect View for

Figure 11.10 To secure a portlet
instance, click the Security link next
to the portlet instance, and then select
the desired access control settings.

304 CHAPTER 11 Configuring the JBoss Portal
Unchecked, then no roles have access to the instance, unless such access rights are
inherited from the page. Let’s extend this example. If the Admin role has view access
to a page containing the Image portlet, then users with that role can view the Image
portlet, but other roles can’t. If you also grant the Unchecked role view access to that
page, all users can see that page, including users who aren’t logged in.

 If you don’t define access control for a component, Unchecked is set to View
Recursive for that component (or View for an instance). By default, all roles, includ-
ing users who haven’t logged into the portal, have access to the component—be it
portal, page, or portlet instance.

 How should you go about defining access control if you want to limit access to cer-
tain pages? There are two basic access scenarios. In the first, you want to grant access
to almost everything and limit access to certain pages to certain roles. In this case,
grant View access to Unchecked for the portal and View Recursive access to
Unchecked for all public pages, but don’t define any access for Unchecked on the pri-
vate pages; assign access control to specific roles instead.

 In the second scenario, you want to restrict access to a portal to only those in spe-
cific roles. In this case, don’t assign any access to Unchecked; assign access only to spe-
cific roles instead. See our earlier presentation of PortalA as an example of this
method.
DEFINING ACCESS CONTROL VIA DESCRIPTORS

You can define access rights using an *-object.xml file. Listing 11.6 shows the portala-
object.xml file, which defines the PortalA portal and declares the roles and access
rights as discussed in the previous section.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<deployments>
 <deployment>
 <parent-ref />
 <if-exists>keep</if-exists>
 <portal>
 <portal-name>PortalA</portal-name>
 <properties>
 <property>
 <name>portal.defaultObjectName</name>
 <value>Page1</value>
 </property>
 </properties>
 <security-constraint>
 <policy-permission>
 <role-name>Role1</role-name>
 <action-name>viewrecursive</action-name>
 </policy-permission>
 <policy-permission>
 <role-name>Role2</role-name>
 <action-name>view</action-name>
 </policy-permission>

Listing 11.6 Creating a portal with access control using *-object.xml

B

C

D

305Securing the Portal
 </security-constraint>
 <page>
 <page-name>Page1</page-name>
 <window>
 <window-name>ImageWindow</window-name>
 <instance-ref>ImagePortletInstance</instance-ref>
 <region>center</region>
 <height>0</height>
 </window>
 <security-constraint>
 <policy-permission>
 <role-name>Role3</role-name>
 <action-name>view</action-name>
 </policy-permission>
 </security-constraint>
 </page>
 <page>
 <page-name>Page2</page-name>
 <window>
 <window-name>ImageWindow</window-name>
 <instance-ref>ImagePortletInstance</instance-ref>
 <region>center</region>
 <height>0</height>
 </window>
 <security-constraint>
 <policy-permission>
 <role-name>Role4</role-name>
 <action-name>viewrecursive</action-name>
 </policy-permission>
 </security-constraint>
 </page>
 <page>
 <page-name>Page3</page-name>
 <window>
 <window-name>ImageWindow</window-name>
 <instance-ref>ImagePortletInstance</instance-ref>
 <region>center</region>
 <height>0</height>
 </window>
 <security-constraint>
 <policy-permission />
 </security-constraint>
 </page>
 </portal>
 </deployment>
</deployments>

The portala-object.xml file defines a portal named PortalA B whose default page is
Page1 C and has security settings D as shown in figure 11.9. There are three pages E,
each of which have different security constraints (F and G) as defined earlier in
table 11.3.

 You declare <window> entries for each page so that the portal shows something.
Note that each page displays the Image portlet.

E

F

E

F

E

G

306 CHAPTER 11 Configuring the JBoss Portal
 If you leave off a <security-constraint> declaration, the access control for
that object defaults to viewrecursive for the Unchecked role. The empty <policy-
permission> tag for Page3 (G) ensures that no permissions are declared for that page.

 You can’t declare roles in the *-object.xml file. Even if the roles aren’t defined in
the portal, the access control for those roles is established so that you can define the
roles later to apply the permissions. Until you define the roles, no access is possible to
the objects so constrained. In this case, nobody has access to PortalA.

 To deploy PortalA, add the portala-object.xml file to the WEB-INF directory of the
image.war file. You can either replace the existing image-object.xml file with portala-
object.xml, or you can have both files present. Nothing prevents you from having mul-
tiple *-object.xml files. Copy the WAR file to the deploy directory, once again observ-
ing the cautions noted at the start of section 10.2.4.

 To access PortalA, you have to create the five roles (Role1 through Role5) and several
users accounts, and add one or more accounts to each role. As an example, you could
create an account named user1 and add that account to the Role1 role. When you log
in as user1, you can access PortalA by entering the URL http://localhost:8080/portal/
auth/portal/PortalA. A user whose only role is Role4 would have to also supply the page
name http://localhost:8080/portal/auth/portal/PortalA/Page2.

 Speaking of Role4, you probably notice that its access is defined as view recursive.
You might wonder what the difference is between the view recursive and view access
controls when applied to a page. Does it apply to the portlet windows on a page? No, it
doesn’t. You can define subpages for a page and view recursive propagates the access
rights to those subpages. Let’s take a quick look at how to define and access a subpage.
CREATING AND ACCESSING SUBPAGES

With a page selected in the Admin portlet, you can create another page which
becomes a subpage of the indicated page, as seen in figure 11.11. If a role has view
recursive access to a page, it has access to all subpages. For example, if page Page1 has
a subpage Page1a, users in role Role3 can’t view page Page1a because Role3 has only
view access rights to Page1. On the other hand, if page Page2 has a subpage Page2a,
users in role Role4 can view page Page2a because Role4 has view recursive access
rights to Page2.

Figure 11.11 To create a subpage, drill down to the parent page, enter the subpage name, and click
Add. The subpage shows up as a page on the parent page.

307Securing the Portal
To access a subpage, hover over the tab that corresponds
to the parent page. A drop-down menu appears that lists
the subpages, as illustrated in figure 11.12. Or if you pre-
fer to type in a URL (or need to type in a URL because you
don’t have access to the parent page but do have access to
the subpage), you could enter a URL such as http://local-
host:8080/portal/auth/portal/PortalA/Page1/Page1a.

 Let’s look at one more thing before we leave this
topic—defining a subpage with the *-object.xml file. Listing 11.7 shows an excerpt
from the *-object.xml file that defines the Page1a subpage for Page1.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
...
 <page>
 <page-name>Page1</page-name>
 <page>
 <page-name>Page1a</page-name>
 <window>
 <window-name>ImageWindow</window-name>
 <instance-ref>JBossLogoInstance</instance-ref>
 <region>center</region>
 <height>0</height>
 </window>
 ...
 </page>
 ...
 </page>
...

Up to this point, we’ve been ignoring the personalize access right. Let’s look briefly at
that next.
UNDERSTANDING PERSONALIZE ACCESS

When a role is assigned personalize or personalize recursive access, that role has view and
personalization ability for the portal or page. For example, you could have used per-
sonalize and personalize recursive in place of view and view recursive in the PortalA, and
the access rights would be exactly the same. Therefore, personalize access provides view
access, but does it grant any other access right? What does personalization mean?

 At this time: nothing. Granting or refusing personalization access has no effect on
what the user can do. The user can edit portlet preferences, change the theme, and
manipulate the dashboard regardless of whether she has personalization access or
view access.

 The JBoss Portal 2.6 introduced a dashboard portal that looks like the home page.
But the user can easily rearrange this portal, dragging and dropping portlets to the
desired position and even adding or removing portlets. The dashboard provides per-
sonalization capabilities to all users. Note that the dashboard portal doesn’t show up

Listing 11.7 Creating a subpage using *-object.xml

Identifies parent page

Identifies subpage

Figure 11.12 Hover over the
page tab to see a drop-down
menu of subpages.

308 CHAPTER 11 Configuring the JBoss Portal
in the list of portals on the Admin portlet, so you can’t restrict who can and who can’t
personalize the dashboard. We leave you to explore the dashboard on your own tour
of the Portal.

11.5 Developing a custom portal
Up to this point, we’ve been working with the default portal that comes with JBoss Por-
tal. Even in section 11.4, where we created a new portal to illustrate access control, the
default portal was still present. Although the default portal is fine for development
work, it’s not what you want for production use. What you want is a customized portal
that contains the pages and portlets you want to use plus a theme and color scheme
that matches your identity or the identity of your company. After all, imagine deploy-
ing a portal to your customers that declares itself to be the JBoss Portal. Not a good
thing. In this section, we show you how to create, package, and deploy a custom por-
tal. We start with the requirements and the proposal before diving into development.

 But before you get started, we should warn you that you’ll modify a lot of the files
that come with the Portal. You’ll either want to work with a copy of the jboss-portal.sar
directory or back it up first. You can also use the source code for the book and follow
along with the custom portal it generates.

11.5.1 Defining the requirements

This portal must meet the following requirements:

1 It must have multiple pages.
2 It must have some, but not all, portlets that come with JBoss Portal.
3 It must have some portlets that don’t come with JBoss Portal.
4 It must include only custom content in the CMS portlet.
5 The portal home page must show up as the default portal page (that is, http:

//hostname:8080/portal shows your portal page, not the default JBoss Portal
page).

6 The portal theme must reflect your corporate or business identity.
7 The example portal must be as simple as possible—K.I.S.S.

We could add another requirement involving access control but don’t do so for a few
reasons. First, adding access control greatly lengthens the example, thereby violating
the last requirement. Second, you should find it fairly simple to apply the recommen-
dations in the access control section to this example. Finally, our primary intent is to
show you how to package and deploy a custom portal and including access control
doesn’t add anything to the discussion.

11.5.2 Making the proposal

Now that we have the requirements down, we can consider how to meet them. The
last requirement, simplicity, becomes the overriding factor in meeting the other
requirements. Here are the proposals for meeting the requirements:

309Developing a custom portal
1 Create a portal with two pages. This meets both requirements 1 and 7.
2 Keep the User portlet so that users can create their own accounts and access

their profiles, but put it on the second page.
3 Place the Image portlet on the second page.
4 Configure the CMS portlet to show the custom content that was presented in

section 11.3. Have it be the only portlet on the first page.
5 Package the custom portal in such a way as to satisfy requirement 5. Yes, we’re

being vague, but we explain how to do this in detail in the following text.
6 Create a custom theme.

As you look over this list, you should have some idea on how to do some of the things.
For example, you should be able to come up with the *-object.xml for the first, sec-
ond, and third proposals. You might think you could do the fourth one using the CMS
Administration portlet, but we’ll show you a different way. And we haven’t covered
the fifth and sixth proposals before. Let’s tackle the simplest thing first—defining the
*-object.xml file.

11.5.3 Defining the portal

Before we get to the contents of the *-object.xml file, let’s look at the portal, as
shipped, to learn how the default portal is defined. If you look for *-object.xml files,
you’ll find them in several locations, as identified in table 11.4.

As you can see, the jboss-portal.sar/conf/data/default-object.xml file defines the
basic layout for the portals, and the other *-object.xml files add to that basic defini-
tion. Knowing this, we can devise a plan to define our custom portal. We’ll leave the
Admin, Template, and Dashboard portals intact, modifying only the layout for the
Default portal. The Default portal will declare both pages with one portlet on each

Table 11.4 Locations and usage of the *-object.xml files that ship with the portal

Location What this file defines

jboss-portal.sar/conf/data/default-object.xml Defines the four portals: Default, Template,
Dashboard, and Admin. For Default portal,
defines the default (Home) page with its three
portlet windows. For Admin portal, defines the
default and Members pages.

jboss-portal.sar/portal-cms.sar/portal-cms.war/
WEB-INF/default-object.xml

Adds the CMS page to the Admin portal.

jboss-portal.sar/portal-wsrp.sar/
portal-wsrp-admin.war/WEB-INF/wsrp-object.xml

Adds the WSRP page to the Admin portal.

jboss-portal.sar/samples/
portal-news-samples.war/WEB-INF/default-object.xml

Adds the News page to the Default portal.

jboss-portal.sar/samples/portal-weather-samples.war/
WEB-INF/default-object.xml

Adds the Weather page to the Default portal.

310 CHAPTER 11 Configuring the JBoss Portal
page. The image-object.xml file for the Image portlet will add the Image portlet win-
dow to the second page. We also must delete the default-object.xml file for the News
and Weather portlets, or those pages will show up again.

 Listing 11.8 shows the full declaration of the default portal for our custom portal
within the jboss-portal.sar/conf/data/default-object.xml file. The rest of the file is left
untouched.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<deployments>
 ...
 <deployment>
 <parent-ref/>
 <if-exists>keep</if-exists>
 <portal>
 <portal-name>default</portal-name>
 <supported-modes>
 <mode>view</mode>
 <mode>edit</mode>
 <mode>help</mode>
 </supported-modes>
 <supported-window-states>
 <window-state>normal</window-state>
 <window-state>minimized</window-state>
 <window-state>maximized</window-state>
 </supported-window-states>
 <security-constraint>
 <policy-permission>
 <action-name>viewrecursive</action-name>
 <action-name>personalizerecursive</action-name>
 <unchecked/>
 </policy-permission>
 </security-constraint>
 <page>
 <page-name>default</page-name>
 <properties>
 <property>
 <name>order</name>
 <value>1</value>
 </property>
 </properties>
 <window>
 <window-name>CMSWindow</window-name>
 <content>
 <content-type>cms</content-type>
 <content-uri>/book/index.html</content-uri>
 </content>
 <region>center</region>
 <height>0</height>
 </window>
 </page>
 <page>
 <page-name>Astronomy</page-name>

Listing 11.8 Custom portal as defined in the default-object.xml file

Defines
portal name

Declares
first page

Places CMS content
on first page

Identifies custom
CMS content

Declares
second page

311Developing a custom portal
 <properties>
 <property>
 <name>order</name>
 <value>2</value>
 </property>
 </properties>
 <window>
 <window-name>UserPortletWindow</window-name>
 <instance-ref>UserPortletInstance</instance-ref>
 <region>left</region>
 <height>1</height>
 </window>
 </page>
 </portal>
 </deployment>
 ...
</deployments>

Notice that this file declares the custom content for the CMS portlet window. We cover
how to set up the content later. The file also defines the second page, Astronomy, but
doesn’t yet define the Image portlet that will reside there. Listing 11.9 shows the port-
let-instances.xml file that declares the Image portlet instance. You should package this
file into the image.war, as shown in section 10.2.4.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<deployments>
 <deployment>
 <instance>
 <instance-id>AstronomyInstance</instance-id>
 <portlet-ref>ImagePortlet</portlet-ref>
 <preferences>
 <preference>
 <name>title</name>
 <value>Astronomy Picture of the Day</value>
 </preference>
 <preference>
 <name>url</name>
 <value>http://antwrp.gsfc.nasa.gov/apod/astropix.html</value>
 </preference>
 <preference>
 <name>regex</name>
 <value>IMG SRC="(image/\d*/\S*.jpg)"</value>
 </preference>
 </preferences>
 </instance>
 </deployment>
</deployments>

You should recognize all of this content from earlier examples, particularly from sec-
tion 11.2.1. Listing 11.10 shows the image-object.xml file that places the Image portlet
window on the second page of the custom portal.

Listing 11.9 The portlet-instances.xml file for the Image portlet in the custom portal

Places User portlet
on second page

312 CHAPTER 11 Configuring the JBoss Portal
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<deployments>
 <deployment>
 <if-exists>overwrite</if-exists>
 <parent-ref>default.Astronomy</parent-ref>
 <window>
 <window-name>AstronomyWindow</window-name>
 <instance-ref>AstronomyInstance</instance-ref>
 <region>center</region>
 <height>1</height>
 </window>
 </deployment>
</deployments>

Notice how the <parent-ref> node references the second page of the custom portal
as declared in the default-object.xml file.

 If this gives you the idea that you can easily and logically define separate pages for
a portal in separate WAR files and then later package the desired WAR files together to
build a custom portal containing only the desired pages, then go to the head of the class.

 Wow, in one section with a few files, we took care of the first three requirements.
Only three requirements are left.

11.5.4 Customizing the theme

We have a confession to make: we lied. For the sixth requirement regarding the por-
tal’s theme, we stated that we’d create a custom theme. Unfortunately, neither of us
has a single artistic bone in our body, and we wouldn’t want to foist a ghastly theme on
you. Additionally, creating a theme is a major undertaking, and there’s that simplicity
requirement. We decided to modify an existing theme.

 To do this, we made a copy of the Renaissance theme, which is the default theme
for the Portal, and edited the theme using Photoshop. We used Photoshop to convert
the muted blue used by Renaissance into the brownish-orange used on the cover of
the book. We then got the color adjustment values from Photoshop (hue: -160, satura-
tion: +39, lightness: +8, in case you’re interested) and applied those adjustments to all
the graphics files. We replaced the existing Favorites icon with one that contains part
of the swordsman from the cover of the book. Finally, we also made the same color
adjustments to the colors present in the stylesheet. You can observe the results of our
efforts in the source code for the book.

 If you decide to edit an existing theme, keep the following points in mind:

■ The existing themes can be found at jboss-portal.sar/portal-core.war/themes.
■ The themes have two main components: a portal_style.css stylesheet and a

series of GIF files in the images directory.

You want to change the logo so that your portal doesn’t advertise itself as the JBoss
Portal. The logo is usually in a logo.gif file, but that’s entirely up to the stylesheet,
which contains a style named logoName that refers to the logo.

Listing 11.10 The portlet-instances.xml file for the Image portlet in the custom portal

313Developing a custom portal
 Many of the themes advertise their creators via a page footer using a ThemeBy
style in the stylesheet. You want to change that text.

 Once the modifications are complete, you need to package the theme in a WAR
file. When you do so, you need to provide a WEB-INF/portal-theme.xml descriptor file
for the theme. Listing 11.11 shows the contents of that file for our theme.

<themes>
 <theme>
 <name>jbia</name>
 <link rel="stylesheet" id="main_css"
 href="/portal_style.css"
 type="text/css"/>
 <link rel="shortcut icon"
 href="/images/favicon.ico"/>
 </theme>
</themes>

You might wonder why the portal-theme.xml file identifies the stylesheet B but not
the image directory. The stylesheet identifies the images and where they’re located.
Therefore, placing the stylesheet in the base directory of the WAR file and locating the
images in a directory called images is merely a convention followed by the existing
themes. You can place the files anywhere you like, provided the references are correct.

 When you create the WAR file, it contains the files illustrated in figure 11.13. We
don’t list all the images, but you should get the idea. Note also that you need a
web.xml file, but it can be a simple one with an empty <web-app> node.

 Once the theme is packaged, you can test it by
deploying the WAR file to the deploy directory.
Then use the Admin portlet to change the theme
for one of the pages and view that page to see the
theme in action. We show you later how to include
the theme in the customized portal distribution.

 If you do this, you’ll notice something—some
visual elements are still blue. Apparently, you can’t
change a color scheme by defining a new theme.
The culprits are the CMS portlet, Admin portlet,
and login dialog box. These artifacts define some of
their own icons and color schemes. And the color
scheme they adhere to is the one defined by Renais-
sance. Therefore, we changed the following files, in
the same way that we changed the stylesheet and
GIFs as indicated earlier:

■ jboss-portal.sar/portal-admin.sar/portal-admin.war/css/style.css
■ jboss-portal.sar/portal-admin.sar/portal-admin.war/img/*.gif

Listing 11.11 Contents of the portal-theme.xml file for our custom theme

Defines
theme name

Identifies stylesheet
used by theme

B

Identifies icon
for theme

Figure 11.13 Abbreviated contents
of the jbia-theme.war file. To use this
theme, copy the WAR to the deploy
directory.

314 CHAPTER 11 Configuring the JBoss Portal
■ jboss-portal.sar/portal-cms.sar/portal-cms.war/images/cms/admin/style.css
■ jboss-portal.sar/portal-cms.sar/portal-cms.war/images/cms/*.gif
■ jboss-portal.sar/portal-core.war/css/login.css
■ jboss-portal.sar/portal-core.war/images/model/login-header-bg.gif
■ jboss-portal.sar/portal-identity.sar/portal-identity.war/style.css
■ jboss-portal.sar/portal-identity.sar/portal-identity.war/img/*.gif

With these changes, the colors are now consistent in all the pages. But there are still
two slight glitches. First, although the header in the page proclaims the custom portal
to be the JBIA Portal, the title bar in the browser window still references JBoss Portal.
Second, the footer on each page states that the portal is Powered by JBoss Portal. The
title and the footer are both declared in the following files:

■ jboss-portal.sar/portal-core.war/layouts/generic/index.jsp
■ jboss-portal.sar/portal-core.war/layouts/generic/maximized.jsp
■ jboss-portal.sar/portal-core.war/layouts/3columns/index.jsp
■ jboss-portal.sar/portal-core.war/layouts/1column/index.jsp

The Renaissance theme doesn’t use the 3columns or 1column files, so you need to
change only the generic ones. The change is the same for all three files, as follows:

...
 <title>JBIA Portal</title>
...
<div id="footer-container" class="portal-copyright">
Custom portal for JBoss in Action</div>
...

Now the customization of the theme is complete. To apply the theme to the custom
portal, modify the theme.id property in the jboss-portal.sar/conf/data/default-
object.xml, as shown in listing 11.12.

<deployments>
 <deployment>
 <context>
 <context-name/>
 <properties>
 <property>
 <name>theme.id</name>
 <value>jbia</value>
 </property>
 ...

If you want to learn more about portal themes and how to create them, the Refer-
ence Guide contains a lengthy chapter on that topic. With the instructions that we
gave you on customizing a theme, the contents of the theme chapter in the Refer-
ence Guide, and a little bit of creativity and artistic talent, you should be able to cre-
ate your own themes.

Listing 11.12 Contents of the portal-theme.xml file for our custom theme

Identifies
theme to use

315Developing a custom portal
 We’ve covered requirements 1, 2, 3, and 6. Only requirement 4, replacing the
default CMS content with our own content, and requirement 5, packaging, are left.

11.5.5 Customizing CMS content

Earlier we showed you how to use the CMS Admin
portlet to add new content. You probably noticed that
some content was already loaded. Where did that
come from? To answer this, look at jboss-portal.sar/
portal-cms.sar/portal/cms/conf/default-content.

 There you’ll see the default contents that were
loaded into the portal when it first came up.

 How would you supply your own default content?
Simple. Copy your content to this directory and let
the CMS component know about it. If you use the con-
tent from section 11.3, the default-content directory
should have the files identified in figure 11.14. Note
that we removed the original default content because
we don’t need it, but you can leave it there if you want.

 To let the CMS component know about the new content, you need to make
changes to two other files. First, there are two changes in the jboss-portal.sar/portal-
cms.sar/META-INF/jboss-service.xml file. Change the DefaultContentLocation attri-
bute of the portal:service=CMS MBean, and change the path criteria within the
DefaultPolicy attribute of the portal:service=Interceptor,type=Cms,name=ACL
MBean. Both changes are shown in listing 11.13.

<server>
. . .
 <mbean name="portal:service=CMS"...>
 ...
 <attribute name="DefaultContentLocation">
[CA]portal/cms/conf/default-content/book/</attribute>
 </mbean>
 ...
 <mbean name="portal:service=Interceptor,type=Cms,name=ACL" ...>
 ...
 <attribute name="DefaultPolicy">
 <![CDATA[... <criteria name="path" value="/book"> ...]]>
 </attribute>
 </mbean>
 ...
</server>

For the second file, you need to modify the portlet.xml file for the CMS portlet. That
file can be found at jboss-portal.sar/portal-cms.war/WEB-INF/portlet.xml, and you
need to change the indexpage preference, as shown in listing 11.14.

Listing 11.13 Updated jboss-service.xml file for CMS default content

Figure 11.14 Directory and
file hierarchy showing the
custom default CMS content

316 CHAPTER 11 Configuring the JBoss Portal
<portlet-app>
 . . .
 <portlet>
 <description>Content Management System Portlet</description>
 <portlet-name>CMSPortlet</portlet-name>
 . . .
 <portlet-preferences>
 <preference>
 <name>indexpage</name>
 <value>/book/index.html</value>
 </preference>
 </portlet-preferences>
 </portlet>
 . . .
</portlet-app>

You now have all of the files necessary for the custom portal, so let’s tackle the last
requirement—packaging it.

11.5.6 Packaging the portal

At this point, you have a hodgepodge of stuff all over the place. Custom CMS content
here, Image portlet there, and theme elsewhere. You need to gather it into one neat
little package that you can deliver to whoever will deploy the portal. And that’s what
we cover in this section.

 You need to make a copy of the jboss-portal.sar directory because you’ll be making
changes to the files in that directory. For this example, copy the directory as jbia-por-
tal.sar. All the changes you make should be done in the copy.

 We start with the CMS content change because we just finished discussing that in
the prior section. Change the jboss-service.xml and portlet.xml files and copy the cus-
tom content files, as we indicated in the prior section.

 Next, copy the jbia-theme.war and image.war files to the jbia-portal.sar directory to
make the updated theme and the Image portlet available. We recommend that you
copy them as exploded WAR directories so that you can easily access the files in them,
particularly the various XML descriptor files. Also, don’t forget to copy the other files
that contain theme-related changes. Those files were listed at the end of section 11.5.4.

 If you want to, you can also include other third-party portlets. For example, the
JBoss Wiki project and JBoss Forums project provide a wiki and a user forum, respec-
tively, that you could add to the portal.

 You need to replace the original jbia-portal.sar/conf/data/default-object.xml file
with the default-object.xml file you created earlier in section 11.5.3.

 Delete the jbia-portal.sar/samples/portal-news-samples.war/WEB-INF/default-
object.xml and jbia-portal.sar/samples/portal-weather-samples.war/WEB-INF/default-
object.xml files so that the News and Weather pages don’t appear.

 The preceding text is dense and contains many instructions. As an overview of
these steps, look at figure 11.15. In the figure, we list the contents of jbia-portal.sar

Listing 11.14 Updated portlet.xml file for CMS default content

Only change
made

317Developing a custom portal
and highlight things that were changed. To keep the figure manageable, we didn’t
include the files and directories that didn’t change; instead, we noted them with text
such as other files and folders.

 Now that you have the custom jbia-portal.sar directory, what do you do with it? Fol-
low the JBoss Portal installation instructions, setting up JBoss AS and the database as
desired. Then copy the jbia-portal.sar directory to the deploy directory. When you
start the application server, the database gets initialized; when you enter the portal
URL, http://localhost:8080/portal, the home page for the custom portal is displayed,
as shown in figure 11.16.

B

C

D

E

F

G

H

I

J

E

I

Custom theme WAR file

Updated to

Delete to

Custom *-object.xml file
that defines pages

Image portlet WAR
file with *-object.xml

Other files
changed to

match theme color

rebrand portal
as JBIA Portal

hide News
page

to hide
Weather page

Delete

Modified to reference
custom CMS content

Custom
CMS content

Other files changed to
match theme color

Modified to reference
custom CMS content

Figure 11.15 Directory and file hierarchy for the custom portal showing the files that were added,
changed, and deleted

http://localhost:8080/portal
http://localhost:8080/portal
http://localhost:8080/portal

318 CHAPTER 11 Configuring the JBoss Portal
There you have it—a custom portal that uses many of the JBoss Portal features that
you learned about in the last two chapters.

11.6 Summary
The last two chapters covered many portal topics, such as the following:

■ Creating a portlet using JSPs and JSTL
■ Using the Admin portlet and the descriptor files to define portlet instances and

portlet windows
■ Using multiple instances within a portal
■ Adding content to the CMS
■ Configuring window appearance
■ Setting up access control for portals, pages, and windows
■ Creating a custom portal

We’ve barely scratched the surface of the JBoss Portal, and many more features and
capabilities could be explored. These chapters should give you a solid foundation so
that you can venture into other topics such as using various frameworks (like Seam or
JSF) to write portlets, deploying a portal in a cluster for high availability, and deploy-
ing third-party portlets to the portal. To find out more about these and other topics,
refer to the Reference Guide and User’s Guide that come with JBoss Portal. You can
find links to them in the References section at the end of chapter 10.

Figure 11.16 The home
page for the JBIA Portal. All
references to JBoss Portal
have been replaced. There’s
a custom color scheme,
custom pages, and a
custom favorites icon.

Part 4

Going to production

There are many issues that you probably aren’t that concerned with during
development of your Java EE application; but, as you get closer to going into
production, those same issues become more important. You begin to wonder:
How will the application scale, can you cluster the application both to promote
scaling and to provide redundancy, and what are the things you need to do
before you release the application into the wild? Chapters 12 through 15 answer
these questions.

 We start this part of the book with two chapters on clustering. Yes, it’s a big
topic. Then, we turn our attention to performance, examining the different
ways you can tune the application. We end with a chapter on miscellaneous
things (such as replacing the Hypersonic database, changing port numbers, and
running the application server as a service) that you’ll want to keep in mind
when putting JBoss AS into production.

Understanding clustering
A single JBoss server can handle several hundred concurrent requests; but, if your
application has to scale to support multiple thousands of concurrent requests or
multiple millions of requests a day, then a single application server probably won’t
do the trick. JBoss enables you to simultaneously run your application on multiple
application servers. Requests going to your application can then be balanced across
these servers, and your application can also withstand individual server failures.
This deployment architecture allows you to achieve maximum scalability with mini-
mal downtime. Clients need not know that their different requests may be handled
by different servers.

 Java EE doesn’t specify any standards for how clustering services should work.
Every application server implements clustering differently and provides a different
set of clustering capabilities and services. Red Hat has set out to make cluster setup

This chapter covers
■ Clustering fundamentals
■ Setting up a simple cluster
■ JBoss clustering
■ Configuring JGroups
■ Configuring JBoss Cache
321

322 CHAPTER 12 Understanding clustering
a simple task. As you’ll learn in this chapter, clusters are easy to create in JBoss and
require minimal configuration. Adding nodes requires no administrative manage-
ment because nodes detect each other automatically over network protocols. JBoss
also provides a sophisticated distributed cache that allows stateful components to rep-
licate their states across multiple nodes in a cluster, enabling you to easily develop
fault-tolerant applications, with very little code.

 In this chapter, we explain the fundamentals of clustering and how to configure clus-
tering in JBoss. We also show you how to get a simple cluster up and running to exper-
iment with. We start with a discussion of the fundamental concepts behind clustering.

12.1 Understanding clustering
Clustering is the act of running the same application on multiple application server
instances simultaneously with each application server being aware of the others in the
cluster. An application server that’s part of a cluster is known as a node. But just having
nodes aware of other nodes in a cluster isn’t interesting. The nodes in the cluster must
be able to communicate with each other to do something useful, such as replicating
state or providing failover capabilities. Before we dive into the specifics of the cluster-
ing features that JBoss offers, let’s examine some of the fundamental concepts behind
clustering. And, because you can’t seem to talk about clustering without talking about
load balancing, let’s start with that.

12.1.1 Load balancing

Imagine you have a retail web application running on a single application server
instance and that you average 10,000 customers a month. Your company decides to
run a TV advertisement and predicts that you may start getting 100,000 customers a
month. You’re tasked with making sure that the application can support this number
of users. In addition, your application needs to be highly available. To accomplish
these goals, you have to deploy multiple application server instances and balance
requests across them.

 Load balancing is a way of balancing incoming load, or concurrent requests, across
multiple application server instances, making your applications scalable and highly
available. Scalability is a term used to describe the ability to make your application
handle more user load by adding hardware and/or creating redundant instances of
your application without having to change code. Load balancing can help scale your
application because you can add more servers for the load balancer to balance the
load across, increasing the amount of traffic your application can handle. High avail-
ability is the ability to continue processing requests in the face of server failure. We
discuss high availability more in section 12.1.4.

 Figure 12.1 shows you the difference between an application with and without load
balancing.

 The load balancer acts as a single point of entry into an application environment
as well as a traffic director for requests. In the diagram found in figure 12.1, you see
that the load balancer (in the middle of the figure on the right) decides which server

323Understanding clustering
to send the requests to. Because this decision happens upstream of the application
server, in many cases, load balancing isn’t a feature of the application or the applica-
tion server and doesn’t even require a cluster. Clusters are necessary when nodes need
to communicate with each other, but aren’t necessarily required for load balancing.

 There are cases when a cluster can be used when load balancing. For example,
with EJB load balancing, the client can obtain a dynamic proxy auto-populated with
the names of the servers in the cluster. Although the cluster isn’t used to enable the
load-balancing feature, it provides information to the load balancer (the dynamic
proxy) to simplify configuration.

NOTE One thing to keep in mind is that load balancing is a mechanism for scal-
ing applications that synchronously execute code. Applications that asyn-
chronously execute requests don’t necessarily need to load balance
requests. In fact, often, you want to make sure that there’s only a single
instance of an asynchronous application or service running to ensure
that it’s managing all the requests. Running a single instance allows the
application or service to manage ordering and priority over all the
incoming requests.

We discuss specific load-balancing features that JBoss provides in chapter 13. Now that
you have a conceptual understanding of what load balancing is, let’s talk about the dif-
ferent types of load balancers and load-balancing strategies.
TYPES OF LOAD BALANCERS

Load balancing can be done in two primary ways: with a hardware load balancer or
with a software load balancer. Hardware load balancers are typically more expensive
but are also more reliable.

 Load balancers typically make a single IP address for a cluster visible to clients. The
load balancer maintains a map of internal (or virtual) IP addresses for each machine
in the cluster. When the load balancer receives a request, it rewrites the header to
point to a particular machine in the cluster. If a machine in the cluster is removed or

Figure 12.1 An application without load balancing (left) provides a single point of failure and a
potential bottleneck, but an application with load balancing (right) can scale better and enables
high availability.

324 CHAPTER 12 Understanding clustering
fails, the hardware load balancer has the ability to recognize the failure and avoid
routing requests to it. Always having a machine available to service requests is known
as high availability, which we discuss more in section 12.1.4.

 Sometimes it’s best to route subsequent requests from a client to a single server,
especially if the component the user is accessing maintains state. This ability to route
users back to the same server across requests is called server affinity. Hardware load bal-
ancers provide server affinity, high availability, and fast performance. The disadvan-
tages are that they’re very expensive and are often more difficult to set up than
software load balancers.

 Software load balancers come in many shapes and sizes. An OS-level load balancer,
such as Microsoft’s Network Load Balancing Service (NLBS), can be used to direct
requests to different Windows servers. Standalone programs, such as Pure Load Bal-
ancer (PLB) for Unix, can be installed to route HTTP traffic coming into a server. But
software load balancing for Java EE applications is most commonly done using a native
web server such as JBoss Web Server, Apache, or IIS. Most native web servers have the
capability of load balancing requests across multiple applications server instances.
Most software load balancers support server affinity and high availability. Software
load balancing is cheaper and easier to set up than hardware load balancing, but the
load-balancing software can consume memory and CPU resources, and the perfor-
mance of the software is at the mercy of other software running on the system.

 Figure 12.2 shows a common topology seen in many publicly accessible applica-
tions such as public web applications. When clients access the domain name for a site,
the DNS server routes the client to the load balancer. The load balancer then routes
requests to the application servers running behind the firewall. The load balancer dis-
tributes the load across application servers and mitigates the security risks that exist
when clients access the servers directly. In this scenario, the load balancer lives in the
network’s demilitarized zone (DMZ), a portion of the network that can be accessed
from outside of the firewall.

 Whether you use a software or hardware load balancer, there are different load-bal-
ancing strategies that you can employ. Some of the most common ones are random,
round robin, and sticky session (or first avail-
able). A random load-balancing strategy sends
client requests to a random server. A load bal-
ancer using a round-robin strategy sequentially
sends requests to servers by going down a list of
servers. With sticky-session load balancing, the
load balancer sends first-time requests using a
random or round-robin strategy; but, once a cli-
ent has established a session with a particular
server, the load balancer directs subsequent
requests to the same server. There are many vari-
ations on these strategies using weight systems
and other distribution policies.

Figure 12.2 A DMZ provides a way for one
or more machines or networking devices to
be accessed from behind a firewall.

325Understanding clustering
 Round-robin DNS load balancing is another well-known software load-balancing
mechanism, but we don’t recommend using it. Let’s discuss why.
ROUND-ROBIN DNS

Some DNS servers provide functionality for load balancing, which is often called
round-robin DNS. With round-robin DNS load balancing, the DNS server is configured
to maintain multiple IP addresses for a given domain name. Each time the domain
name is accessed, the DNS server can return a different IP address, load balancing
across the different IP addresses.

 Round-robin DNS load balancing is generally simple to configure but has a few
problems. First, clients (and other DNS servers) often cache IP addresses so that they
can avoid doing another lookup. Caching IP addresses can lead to unbalanced load
distribution where a few servers are overused and others are underused. Second, DNS
servers don’t have server affinity so they’ll keep forwarding requests blindly, even if
your server crashes. The third problem is that you don’t have control over the DNS
server’s load-balancing policy, so you can’t take advantage of things like sticky sessions
and failover.

 We don’t recommend round-robin DNS load balancing for anything more than
testing purposes. There are several different DNS servers for different server environ-
ments; if you choose to go this route, refer to your DNS server documentation for fur-
ther details.

 Although load balancing doesn’t necessarily need a cluster, it’s often discussed
when talking about clustering because there are so many overlapping concepts. Let’s
specifically talk about clusters now and see what features they provide. We start with a
discussion about cluster topology and makeup.

12.1.2 Cluster topology and makeup

Clusters can be formed with nodes running on one machine or on multiple machines.
The formation of a cluster’s nodes is often referred to as the cluster’s topology. When
the nodes of a cluster are on different machines, the cluster is said to be horizontal.
When the nodes are on the same machine, the cluster is described as vertical. Many
clusters are both horizontal and vertical, as shown in figure 12.3.

Figure 12.3 A horizontal
cluster runs on multiple machines,
whereas a vertical cluster runs on
a single machine. Often clusters
have both horizontal and vertically
stacked nodes.

326 CHAPTER 12 Understanding clustering
Two JBoss instances run on the server in the upper-left corner of this figure. These
instances are configured to run in the same cluster, forming a vertical cluster. The
horizontal cluster on the right is formed from one JBoss instance running on the
server in the upper-left and another from the JBoss instance running on the server in
the bottom of the figure. A mixed cluster can also be formed from machines on the
same machine, or on different machines.

 Each model has its pros and cons. It’s easy to install each node of a horizontal clus-
ter without worrying about the nodes having port conflicts or having unique directo-
ries for writing temporary files and logs. As we discuss in chapter 15, setting up
multiple JBoss instances on the same machine isn’t entirely trivial, but it’s manageable.
Vertical clusters are a little more difficult to install.

 Pop quiz: Which performs better, a vertical cluster or a horizontal cluster? Sorry,
this is a trick question. There’s no simple answer because there are many variables. If
you have a powerful server with a tremendous amount of RAM and multiple proces-
sors, a single application server instance probably won’t be able to use all the hard-
ware resources. For example, a single JVM instance can only allocate so much RAM
(depending on the OS and memory addressing used). In this scenario, a vertical clus-
ter would take better advantage of your hardware resources while avoiding network
latency, allowing you to have a fast cluster.

 But if you’re running on a single machine whose resources are nearly consumed
while running a single application server instance, running multiple application serv-
ers on that machine would surely be slow. An overused machine might drive you to
buy better equipment or opt for a horizontal cluster. Horizontal clusters are also used
when cluster nodes are divided across multiple geographies, but these clusters can be
slow if inter-node latency is high.

 The other things to consider when looking at your cluster topology are fault toler-
ance and scalability. In general, a horizontal cluster gives you better fault tolerance
because, if a server in the cluster fails, the others can still handle requests. Scalability
refers to adding hardware resources to support more request concurrency. You can
only upgrade a single machine in a vertical cluster so much (scaling up). But you can
always add more machines to a horizontal cluster (scaling out).

 JBoss makes bringing up a vertical, horizontal, or mixed cluster fairly easy by using
a feature called automatic discovery. Automatic discovery allows cluster nodes to dis-
cover each other without you having to configure them to know about each other.
After installing all of your JBoss AS nodes, bringing up any cluster topology is relatively
easy. We discuss automatic discovery further in section 12.1.3.

 Cluster nodes can have different applications or services deployed to them. The
likeness of applications deployed across multiple nodes is described as the makeup
(or uniformity) of the cluster. A homogenous cluster is one whose nodes all have the
same application or applications deployed on them. A heterogeneous cluster is one
whose nodes have different applications or application components deployed on
them. Certain clustering services, such as high-availability JNDI, form better when a

327Understanding clustering
cluster is homogenous. Heterogeneous clusters are inevitable in some production
environments where hardware resources are limited and shared. As we delve into the
details of each service, we discuss where the performance may become impacted by
the topology of the cluster and the makeup of the cluster.

 Now that you have a basic understanding of how clusters are structured, let’s exam-
ine how clusters are formed and how they communicate in JBoss.

12.1.3 Automatic discovery and multicasting

As we mentioned, JBoss clustering makes it easy for nodes to self-form into clusters
without the need to tell each node where the other nodes are physically located. This
feature is known as automatic discovery, meaning that a node can automatically dis-
cover an existing cluster or form its own cluster and allow other nodes to its cluster. If
a cluster doesn’t already exist, the first node creates the cluster and become a coordi-
nator, meaning that it manages how other nodes subscribe to the existing cluster.

 The automatic-discovery features are built on top of a group-communication
mechanism known as multicast—a method for forwarding information to a group of
people where the sender is only required to send the message once and doesn’t need
to know the list of recipients. As long as the recipients are listening on the communi-
cation channel where the multicast was sent, then they’re able to receive the commu-
nication. A real-world analogy is that of a TV or a radio—only users who are tuned in
to the correct channel receive the information. Multicast is different than a multiple
unicast scheme where the sender sends messages to each receiver individually.

 The communication channel used for multicast communication is composed of a
multicast address and a multicast port. Because multicast is used for group communi-
cation, the multicast address is also called the group address. Group members send mes-
sages to this address and subscribe to receive messages that others send. The sender’s
address is the address used for regular unicast communication (the regular IP address).
Figure 12.4 shows three nodes that are participating in a cluster. Each node has its own
IP address and is communicating with the
others over a group address and port.

 The fastest form of multicast is when the
network transport protocol enables multi-
cast, such as with UDP. If the underlying net-
work doesn’t support multicast, a multiple
unicast scheme can be used in its place, but
cluster performance may not be as good if
there’s a lot of cluster traffic.

 JBoss uses a tool called JGroups to enable
peer-to-peer communication between nodes.
JGroups is a toolkit for reliable multicast com-
munication. It uses existing network infra-
structure and protocols to transmit multicast

Figure 12.4 A message sent to the group
address is available to any node configured
to listen on that group address.

328 CHAPTER 12 Understanding clustering
messages that are reliable because receivers can request retransmission of lost packets
of data. JGroups enables several features used in JBoss clustering, including support for
different transport protocols, automatic discovery, reliability, failure detection, and clus-
ter membership-management services. JGroups enables you to configure multicast over
UDP or a simulated multicast (using a multiple unicast) over TCP.

 Understanding how automatic discovery and multicast work gives you a good
sense for how clusters form and how nodes communicate. Now, let’s talk about high
availability.

12.1.4 High availability

Many network applications require high availability, or the ability to accept client
requests with minimal downtime, while maintaining reasonable response times.

 Many application vendors and service providers advertise their uptime in terms of
a percentage. But achieving 100 percent availability (or uptime) is nearly impossible,
so the availability is often advertised by how many nines they have. For example, 99.99
percent availability is known as four-nine availability. Table 12.1 summarizes the differ-
ent uptime percentages and how they equate to actual downtime.

There are two primary ways to achieve high availability. If you have a completely state-
less application, you can achieve high availability through load balancing. If you are
load balancing, it doesn’t matter if a node goes down because clients get redirected to
nodes that are still up. Load balancing provides high availability when there’s no
server state because it doesn’t matter if requests coming from the same client go to
different servers.

 With stateful applications, you typically don’t want clients’ requests going to differ-
ent servers after they’ve started a stateful conversation. Once a client starts talking to a

Table 12.1 How the various uptime percentages relate to actual time

Uptime
Availability based on

number of nines
Allowed downtime per

year

98% 7.3 days

99% 2-nine 87.6 hours

99.5% 43.8 hours

99.9% 3-nine 8.8 hours

99.95% 4.4 hours

99.99% 4-nine 53 minutes

99.999% 5-nine 5.3 minutes

99.9999% 6-nine 31 seconds

99.99999% 7-nine 3.1 seconds

329Understanding clustering
server, he keeps talking to that same server. But if a server goes down you still want
users to be able to continue accessing your application. Stateful architectures can
achieve high availability by providing a mechanism for failover. If a client is interacting
with a server for the duration of multiple requests and that server crashes, failover
allows the user to work on another machine. Like load balancing, failover is the job of
a hardware or software load balancer that sits upstream from your application server.

 It’s important to note that high availability is better achieved with horizontal clus-
tering. Although a vertical cluster will save you if a JVM instance crashes, it won’t save
you if the entire server crashes due to events such as network failures, power failures,
hardware crashes, or OS crashes.

 You don’t necessarily have to have a cluster to achieve high availability; but, if you
have a stateful system, a cluster provides a great way to achieve fault tolerance.

12.1.5 Replication and fault tolerance

A fault-tolerant clustered application is one that’s highly available and can continue
communicating with clients without fault, even if a server crashes. The users are guar-
anteed correct behavior between requests, even if the server that they were communi-
cating with has crashed. In the case of stateless architecture, fault tolerance is implied
as long as the application is highly available. In the case of a stateful application, fault
tolerance implies that the application fails over and that the client’s state is available
on the server the application failed over to.

 Let’s look at an example to understand fault tolerance. Imagine you’re going
through the checkout process on a retail website. The conversation between the
browser and the server likely lasts several request/response cycles because you have to
fill out multiple screens (billing information, shipment information, verifying the
order, and so on), so the server has to store the state of your conversation between
requests. If the server crashes in the middle of your checkout process and the cluster
fails your request, but not your state, over to another node, then you wouldn’t experi-
ence any downtime. But, unfortunately, you’d have to fill out your shopping cart again
and redo the entire checkout procedure because your state is gone. Just because your
application supports failover doesn’t mean that it’s fault tolerant.

 Two types of data are typically associated with a user’s state: session data and entity
data. Session data is associated with a user and is owned by the node that the client is
communicating with. Session data is maintained in memory by the application or
through caching services enabled by the application server. Some examples of compo-
nents that maintain session state data include HTTP sessions and SFSBs.

 Entity data is owned by the database. The master copy of the data is maintained in
the database although many applications keep some of the entity data in an in-mem-
ory cache for better performance. EJB3 entities are an example of components used to
read and store entity data.

 To be fault tolerant, state associated with an application must be redundantly avail-
able. To ensure that session data is fault tolerant, a copy of the data must be available

330 CHAPTER 12 Understanding clustering
outside of the node by which it’s owned. JBoss uses a clustered cache that can replicate
cached session data across nodes in a cluster. The act of replicating state data across
nodes in a cluster is known as state replication. For session data, you can think of fault
tolerance as abiding by the following equation:

 fault tolerance = fail over + state replication

Figure 12.5 shows a client sending messages to a server that fails, but the server is rep-
licating its state with another server.

When the server fails, the client fails over to a new server instance. Because the session
state was replicated to the other server before the failure, the client can continue
working without losing state.

 For entity data to be fault tolerant, the database must be redundantly available.
Enabling database fault tolerance requires knowledge of your particular database
server, and is outside the scope of this book.

 State can be replicated in different ways. Let’s examine these methods of state rep-
lication and talk about the differences.
TYPES OF STATE REPLICATION

There’s a trade-off to having fault tolerance and, as is often the case in software devel-
opment, that trade-off is performance. To guarantee fault tolerance, you must use syn-
chronous replication—the replication has to finish before a response can be sent back
to the user. If there’s a lot of inter-node latency, synchronous replication can be slow,
especially if the state is being replicated across all the nodes in the cluster, because
your response time is always slower than the node that took the longest to replicate
the state on.

 Asynchronous replication is also an option—the replication is initiated when a
request is received but a response is sent back to the user before replication com-
pletes. The drawback with the asynchronous-replication model is that it doesn’t guar-
antee that the state of one request is replicated before subsequent requests are sent;
there isn’t a 100 percent guarantee of fault tolerance. If you’re configuring state repli-
cation for a cache that holds session data, you have to decide whether you can afford

Figure 12.5 Fault tolerance for session
data requires failover and state replication.

331Understanding clustering
this increased risk. With an entity cache, only synchronous replication ensures a con-
sistent cache. You should only use asynchronous replication with an entity cache if you
can tolerate reading stale data from your cache.

 You always have the option of not replicating at all. Not replicating state in a state-
ful application means that your application wouldn’t be fault tolerant. This sounds
bad, but you have to weigh the performance gain against the potential loss of state.
How often do you have a server failure? How many users would lose their sessions?
What kind of state would be lost? For example, if you have a retail site with a shopping
cart and, over the course of a year, only .05 percent of your users might lose their
shopping cart states once, then you might be better off not replicating state and
increasing your performance. If the state that you might lose relates to important
financial transactions or if 10 percent of your users might be affected 2 to 3 times a
month, you might want to replicate your state. Then, you have to consider whether to
do synchronous or asynchronous replication.

 Another scenario where you might consider skipping replication all together is if
your application keeps noncritical state in memory and critical state is kept in the
database. For example, if you keep your shopping cart data in the database, but the
user’s session information is kept in memory, the user may have to log in again if
there’s a server failure, but the shopping cart state would still exist.
TOTAL REPLICATION VERSUS BUDDY REPLICATION

When every node in a cluster is replicating state with every other node in the cluster,
we call it total state replication. With total state replication, each node has to keep its
own state, as well as the state that has been replicated from other nodes. In a cluster
where state is replicated across all the nodes, each node has to cache the sum of the
session data across all the nodes. The amount of memory needed to store all the state
can add up quickly. In addition to consuming excessive memory, each node must use
CPU resources in processing replication traffic from all other members in the cluster.
JBoss alleviates these problems through two features: buddy replication and state pas-
sivation. We discuss state passivation in section 12.1.6.

 Buddy replication is a type of replication in which state is replicated across only a
subset of nodes in a cluster. Buddy replication allows you to store only the state of the
subset of nodes you are buddies with, reducing the amount of memory, network traf-
fic, and CPU usage as compared to total state replication. If a node fails, any node that
a request fails over to is capable of retrieving the information from the buddy node.

 In figure 12.6, you see a cluster in which each node is set to have a single buddy
node.The left side of this figure shows a cluster with each node replicating to one buddy.

Figure 12.6 With buddy
clustering, when a node
fails, another node takes
over as the buddy for the
node that went down.

332 CHAPTER 12 Understanding clustering
Each node maintains its own data in addition to the data for the node replicating to it.
The right side of this figure shows how the cluster adapts when node D fails. Node C
starts replicating data to Node A, and Node A joins its stored data with its regular data
and starts storing the data that Node C starts replicating to it.

 Each node maintains its own data in addition to data from another node, its
buddy. For example, node A maintains its own data, replicates its data with node B,
and stores data from node D. If node D goes down, node A joins its backup data from
node D and its own data and starts backing up data from node C.

 Buddy replication is available to anything that runs on top of JBoss Cache, so it can
be used to replicate HTTP session state and SFSB state even though it’s only enabled
for HTTP-session replication out of the box.
INVALIDATING CACHED ENTITY DATA

As we stated earlier, entity data is owned by the database, but for performance reasons,
many people make portions of the entity data available in a cache. Because all the nodes
are pointing to the same database, which holds the master copy of the entity data,
updates made to the entity data through one node don’t necessarily have to be repli-
cated to other nodes. An alternative is to invalidate data in the cache. Invalidation causes
one node to send a message to the other nodes to let them know that they no longer have
the latest copy of the entity data and should evict it from their caches. If a request is sent
to another node to load that same data, it has to read it from the database.

 Invalidation is faster than state replication and creates less network traffic because
the messages are much smaller. Invalidation messages are smaller than replication
messages, so replication traffic can be reduced greatly by using invalidation.

 Earlier in this section we talked about how buddy replication can help alleviate
problems associated with total state replication. Now let’s discuss state passivation, the
other mechanism that JBoss provides for alleviating these problems.

12.1.6 State passivation

Some applications need to keep sessions open for a long period of time. But keeping
sessions open consumes memory, even when the sessions are inactive for a long time.
Session passivation can be used to store
inactive sessions in a secondary storage
device (such as a disk, database, and so
on). These sessions can then be activated
if they’re accessed again, or purged if
they time out.

 Figure 12.7 shows a cache that’s
already full. When a new user makes a
request and the session manager tries to
store it into the cache, the cache must
passivate one of its older sessions into
the database. When an old user whose

Figure 12.7 Passivation causes objects to be
stored in a backend data source. These objects
can be activated at a later time.

333Understanding clustering
session is passivated tries to access the session, the cache must activate the session back
into the cache.

 There’s obviously a trade-off on the response time of a request that has to suffer
the latency involved in the activation of the session. In chapter 13, we discuss SFSB pas-
sivation and HTTP session passivation.

12.1.7 Distribution versus clustering

If you’re new to clustering, one important
distinction to make is the difference
between clustering applications and distrib-
uting application components. Distribution
is the act of separating logically distinct
application components onto physically sep-
arate machines—you use multiple machines
to run a single application. Clustering is the
act of running the same application on mul-
tiple machines simultaneously. Figure 12.8
illustrates the difference between the two.

 The distributed application on the top
has two components, A and B. When a client
accesses component A, it makes a remote call
to access component B every time the com-
ponent is needed. With the clustered appli-
cation, the load balancer can distribute the
load to one server or another in the cluster,
but components A and B are collocated on
each node, so no remote calls are necessary.

 Many people think that distribution is a
good strategy for making an application scalable. The idea is that you distribute the lay-
ers, and then you add redundant servers hosting only the layers that act as a bottleneck.
For example, if your web layer acts as a bottleneck, you might add multiple servers run-
ning your web layer, load balancing across all of them, but still run a single EJB server.

 The reality is that distribution is both more complicated and less performant than
collocating all your application layers on one server and load balancing the entire
application. Distributing different layers of your application means that every transac-
tion has to do a remote call over a network. Even if the layers are hosted on different
machines on a fast network located on the same subnet, the network latency increases
your response time by orders of magnitude over an architecture where the layers are
running in the same process.

 A collocated architecture allows all the calls between layers to be made in the same
process, making them extremely fast. Scalability can occur by load balancing across
multiple nodes that run the same application, with all layers included. The moral of

Figure 12.8 A distributed application
(top) requires multiple machines,
whereas a collocated application requires
only a single machine (bottom) but can
be clustered for scalability.

334 CHAPTER 12 Understanding clustering
the story is to avoid distributed architectures and aim for a design that can be clus-
tered easily.

 At this point, you should know enough about the fundamentals of clustering to
ramble on for hours. Let’s put some of this knowledge to use by setting up a cluster.

12.2 Setting up a simple cluster
When I (Javid) teach JBoss courses, people seem to have the most fun during the clus-
tering labs. My amateur psychoanalysis leads me to believe that joining into a cluster
and interactively sending messages back and forth to other nodes elicits a sense of
community and belonging that makes people happy. Or, it could be that they’re
happy that I’ve stopped babbling and let them do a lab.

 When learning how to cluster, it’s important to run a real cluster and play around
with it. In this section, we walk you through setting up a simple vertical cluster on a
single machine so that you can experiment with clustering on your own. Let’s start by
learning how to bring up a simple cluster.

12.2.1 Bringing up a JBoss cluster

In chapter 1, we explained how to start the all server configuration (using the –c all
command-line switch when running the start script). The all configuration has all the
JBoss clustering services enabled. Without you changing any settings, starting multiple
instances of the all configuration on different machines on the same subnet should
bring up a cluster.

 Many JBoss users who are experimenting with clustering don’t have access to multi-
ple machines and/or a properly configured network to do so. If you only have a single
machine, don’t worry—you can run multiple JBoss servers on a single machine and
join them into a cluster. The challenge with running multiple nodes on the same
machine is that each node needs to have its own temp directories and has to bind to
different ports (or the same ports on different IPs).

 If you’re following along with only a single machine, the simplest thing to do in
Linux is to bind one cluster node to localhost and the other to your machine host-
name. If you’re using Windows, you can create a Microsoft Loopback Adapter and set
it up with two IP addresses using the advanced TCP/IP settings. We have links at the
end of this chapter to show you how to do these two steps in Windows, but here’s a
summary of the steps for Windows XP:

1 Go to Add Hardware in the Windows Control Panel.
2 Select Yes, I Have Already Connected The Hardware.
3 Scroll to the bottom of the Installed Hardware list and select Add A New Hard-

ware Device.
4 Select the manual installation option.
5 Select Network Adapters.
6 Select Microsoft as the Manufacturer and Microsoft Loopback Adapter as the

Network Adapter.

335Setting up a simple cluster
7 After it finishes adding the adapter, go to Network Connections in the Windows
Control Panel and rename your newly added adapter to be something like Loop-
back for quicker identification.

8 Click the loopback adapater, go to Properties, and go to TCP/IP properties.
9 Specify a non-routable IP address (such as 192.168.1.140) with a subnet mask

of 255.255.255.0.
10 Click Advanced… and add another IP address (such as 192.168.1.141) with the

same subnet mask. Note that, at, this point, you may have to restart your machine.

For the remainder of this example, we use the following
IP addresses: 192.168.1.140 and 192.168.1.141.

 Regardless of whether you’re running multiple nodes
on a single machine or on separate machines, the cluster
configuration should be the same. Starting with a newly
unzipped copy of JBoss, navigate into the server directory
and copy the all directory twice: once to a directory called
node1 and once to a directory called node2. The con-
tents of your server directory should now look like that
shown in figure 12.9.

 Now open two console windows and go to the JBoss
bin directory in each. In the first window, start the JBoss
instance using the following command:

./run.sh –c node1 –b 192.168.1.140 –Djboss.messaging.ServerPeerID=1

The –c command specifies which server configuration you’re using. The –b com-
mand specifies the IP address to which the node will bind. We talk about binding
more in chapter 15. You can change this value to match the IP address or hostname
that you’re using. The –Djboss.messaging.ServerPeerID command sets a unique ID
for the node’s JBoss messaging service, which is required or the clustered messaging
services won’t start properly.

 Let that server instance start completely. Scrolling up in the console, you should
see some output that looks like this:

[DefaultPartition] Initializing partition DefaultPartition
[DefaultPartition] Number of cluster members: 1
[DefaultPartition] Other members: 0
[DefaultPartition-HAPartitionCache] JBoss Cache version: JBossCache

'Alegrias' 2.1.1.GA
[DefaultPartition] Fetching serviceState (will wait for 30000 milliseconds):
[DefaultPartition] State could not be retrieved (we are the first member in

group)

This output tells you a few things. First, you see messages related to the Default-
Partition. A partition is merely another word for a cluster. Different services running
in JBoss participate in different partitions. Technically, a two-node cluster may create
and communicate over four or five different clusters. If you scroll back in the console,

Figure 12.9 The contents of
the server directory after the
all configuration has been
copied as node1 and node2

336 CHAPTER 12 Understanding clustering
you’ll see output related to other clustered services such as Messaging and HAJNDI.
You also see that node1 is the first group member for this partition.

 Now, in the second console, start the other server using the following:

./run.sh –c node2 –b 192.168.1.141 –Djboss.messaging.ServerPeerID=2

After the second node starts, take a look back at the first console (for node1). You
should see that several additional messages have been printed. Here’s part of what you
should see:

[DefaultPartition] New cluster view for partition DefaultPartition (id: 1,
➥ delta: 1) : [192.168.1.140:1099, 192.168.1.141:1099]

 You now have a two-node cluster. If you don’t see similar output, then you may have
problems with your network multicast settings. Open a web browser and visit the fol-
lowing URLs in different tabs or browser windows to see each node’s root web application:

http://192.168.1.140:8080/
http://192.168.1.141:8080/

You may have noticed that you don’t have to tell each node about the other nodes in
the partition. You just started an out-of-the-box configuration of JBoss AS and the clus-
ter formed by itself, thanks to JBoss AS’s automatic-discovery feature.

 OK, so you have two nodes that know about each other—so what? The fact that two
nodes are communicating with each other isn’t interesting unless they can do some-
thing useful, right? Well, let’s make them do something. Let’s create an EJB and deploy
it to both servers and see how you can take advantage of the cluster.

12.2.2 Creating a clustered EJB

Let’s create a simple EJB application with a client that counts from 1 to 100 and sends
each number to the server to be printed on the console window. Because the server is
clustered, the client’s dynamic proxy calls the cluster nodes in the server using a
round-robin load-balancing strategy.

 Start by creating a JAR file that contains the compiled code for the interface shown
in listing 12.1.

import javax.ejb.Remote;
@Remote
public interface Counter {
 public void printCount(int messageNumber);
}

Then add the EJB in listing 12.2 that implements the interface.

import javax.ejb.Stateless;
import org.jboss.ejb3.annotation.Clustered;
@Stateless

Listing 12.1 The remote interface for a clustered SLSB

Listing 12.2 The bean code for a clustered SLSB

337Setting up a simple cluster
@Clustered
public class CounterBean implements Counter {
 public void printCount(int countNumber) {
 System.out.println(countNumber);
 }
}

This code defines a SLSB that prints an integer to the standard output. Notice that the
bean class has a @org.jboss.ejb3.annotation.Clustered annotation defined. This
annotation tells the server that this bean is clustered and should be load balanced. We
discuss EJB load balancing further in chapter 13.

 To build this code, you need a class path that includes the client/jbossall-client.jar
file. After you build the EJB, package it into an EJB-JAR file. Now you’re ready to deploy
it to the server. Well, actually, you’re ready to deploy it to the servers.

12.2.3 Deploying your application

Now that you have an application archive, copy it to the server/XXX/deploy direc-
tory on both servers. If you don’t want to manually copy your archive to each applica-
tion server, there are several ways to do clustered deployments. JBoss provides a
farming service, but it has a bad track record and most people don’t rely on it in a
production environment.

 A popular way to handle cluster deployments is to configure the deployment scan-
ner (described in chapter 3) so that each node points to a directory mounted on a
network. On Windows, you can use Server Message Block (also known as SMB or
Microsoft Windows Network) to create a mount. On Unix, you can use Network File
System (NFS). Then, when an application archive is put into the network mounted
directory, all the application servers will pick it up and deploy it.

 Now that the server is running, let’s build and execute the client code.

12.2.4 Calling the clustered EJB

Now that your application has been deployed onto both nodes of your cluster, build
the client code shown in listing 12.3.

import javax.naming.Context;
import javax.naming.InitialContext;
public class Client {
 public static void main(String[] args) throws Exception {
 InitialContext ctx = new InitialContext();
 Counter s = (Counter) ctx.lookup("CounterBean/remote");
 for (int i = 0; i < 100; i++) {
 s.printCount(i);
 Thread.sleep(1000);
 }
 }
}

Listing 12.3 The client code that calls the clustered SFSB

338 CHAPTER 12 Understanding clustering
To build this code, you need to have a class path that includes the client/jbossall-
client.jar file. To run this code, you need to define the following jndi.properties file in
the root of your class path:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.factory.url.pkgs=org.jboss.naming

Run this code in a process running outside of your application server. When the client
starts, it uses automatic discovery to find a JNDI server and then uses the JNDI server to
obtain a remote interface (dynamic proxy) for a SLSB. The client simply calls the
printCount() method on the dynamic proxy in a loop with a one-second pause
between calls. Each time the printCount() method is executed the dynamic proxy
calls the server to execute the SLSB code.

 After starting the client, pull up the consoles for each node, and you should see that
the messages sent from the client are being load balanced across both nodes. Table 12.2
shows you a sample of the output that you might see on the console windows.

As you can see, the dynamic proxy is directing the calls to both servers in a random
fashion. Now, try bringing down one of the nodes, and you should see that load bal-
ancing allows the client requests to continue hitting the running node. The applica-
tion is now fault tolerant. (Remember, stateless applications only require load
balancing in order to be fault-tolerant.)

 We haven’t gotten into the details on how clustering is configured. Up to this
point, our goal was to get something up and running so that you could get a sense of
how easy it is to form JBoss AS clusters. We get into the details throughout the rest of
this chapter and the next. Now that you’ve seen how to set up a cluster and some sim-
ple things that you can do with that cluster, let’s explore how to configure and use the
basic JBoss clustering services.

12.3 Understanding JBoss clustering
JBoss uses multicasting to enable automatic discovery and group communication
within a cluster. All the JBoss clustering services are built on top of JGroups, as shown
in figure 12.10.

Node 1 console output Node 2 console output

INFO [STDOUT] 0 INFO [STDOUT] 2

INFO [STDOUT] 4 INFO [STDOUT] 7

INFO [STDOUT] 8 INFO [STDOUT] 9

INFO [STDOUT] 1 INFO [STDOUT] 3

INFO [STDOUT] 5 INFO [STDOUT] 6

INFO [STDOUT] 10

Table 12.2 The messages that
are sent from the client arrive in
both nodes, showing that the
clustering configuration worked.

339Understanding JBoss clustering
The figure shows most of the major clustering services covered in this book, as well as
some services that aren’t covered. As you can see, several of the services build on top
of JBoss Cache, which in turn builds on top of JGroups. We talk about JBoss Cache
later on in the chapter.

 In the next section, we explain how JGroups works and show you how to configure
it. Let’s start off by building an understanding of the JGroups architecture.

12.3.1 Understanding the JGroups architecture

Two of the main architectural components in
JGroups are the channel and the protocol stack.
A channel provides a way for applications to con-
nect and send messages to other members in the
cluster. When a message is sent, it works its way
down the protocol stack, and when it’s received,
it works its way up the stack. Figure 12.11 shows
an application on one node of a server sending a
message through JGroups to an application on
another node.

 Each layer in the stack consists of a protocol. In
JGroups, a protocol doesn’t necessarily corre-
spond to a transport protocol. A protocol in
JGroups is a component that can send, receive,
modify, reorder, pass, or drop a message. For
example, the FRAG protocol can fragment outgoing messages by breaking them up into
smaller parts, reassembling them into one message when they’re received. Table 12.3
gives a summary of the different protocols available in JGroups.

 Different services have the ability to use different channels; configuring multiple
channels necessitates more threads and, in turn, more CPU context switching. It is more
efficient to use a single JGroups channel that multiplexes the cluster traffic, so that’s
exactly what JBoss does out of the box. All the JBoss clustering services are configured
to run on top of a single multiplexed JGroups channel as suggested in figure 12.11.

 Let’s look at the main files used to configure JBoss clustering and how to use them
to define a unique cluster.

Figure 12.10 The
various clustering
services build on top
of JGroups and JBoss
Cache.

Figure 12.11 Outgoing requests go
down the JGroups stack, and incoming
requests go up the stack.

340 CHAPTER 12 Understanding clustering
12.3.2 Configuring JBoss clustering services

Each of the clustered services in JBoss either defines its own cluster configuration or
builds on top of a default cluster configuration defined in the server/all/deploy/
cluster/cluster-jboss-beans.xml file. Table 12.4 summarizes the various clustering ser-
vices that JBoss offers, lists the configuration files, and points you to the sections where
you can find more information about the service.

Table 12.3 The different protocols available in JGroups

Protocol category Description Protocols

Transport protocols Transport protocols are found at the bottom of the
stack and are responsible for sending and receiving
messages to/from the network. The primary trans-
port protocols are UDP and TCP. If firewall constraints
exist, cluster traffic can be tunneled using the TUN-
NEL protocol.

UDP, TCP, TUNNEL, JMS,
LOOPBACK

Initial membership
discovery

These services are used when a node is trying to estab-
lish initial membership. A node either joins an existing
cluster if one is found or decides to start its own.

PING, TCPPING,
TCPGOSSIP, MPING

Fragmentation and
merging

These services are used to split larger packets up
into smaller ones when sending them and then reas-
semble them when they’re received.

FRAG, FRAG2

Reliable message
transmission

These services are used to ensure that packets are
sent in the correct order and that all expected pack-
ets for a particular message have been received.

CAUSAL, NAKACK,
pbcast.NAKACK, SMACK,
UNICAST, PBCAST,
pbcast.STABLE

Group membership The group membership (GMS) protocol is used to
notify the cluster when a node leaves, joins, or
crashes. The MERGE protocol is used to unify groups
that have been split. The VIEW_SYNC protocol
causes group members to periodically synchronize
their membership information.

pbcast.GMS, MERGE,
MERGE2, VIEW_SYNC

Failure detection These services are used to poll nodes in the cluster
to ensure that they’re still alive and active.

FD, FD_SIMPLE, FD_PING,
FD_ICMP, FD_SOCK,
VERIFY_SUSPECT

Security The AUTH protocol adds a layer of security to
JGroups.

AUTH

State transfer These services are used to transfer application state
to a joining member of a group.

pbcast.STATE_TRANSFER,
pbcast.STREAMING_
STATE_TRANSFER

Debugging These services are used for diagnostic, performance
tuning, and debugging purposes.

PERF_TP, SIZE, TRACE

Miscellaneous The COMPRESS protocol is used to compress and
decompress packets. The FLUSH protocol is used to
tell a node to send all its queued messages and
block it from sending more.

COMPRESS,
pbcast.FLUSH

341Understanding JBoss clustering
Each clustered service must point to the channel and the protocol stack that it wants
to use. The configuration is similar in each file, so let’s take the cluster-jboss-beans.
xml file as an example. This microcontainer configuration file defines a bean called
HAPartition. The configuration for this bean looks something like this:

<bean name="HAPartition"
 class="org.jboss.ha.framework.server.ClusterPartition">
 ...
 <property name="cacheManager">
 <inject bean="CacheManager"/>
 </property>
 <property name="cacheConfigName">
 ha-partition
 </property>
 <property name="partitionName">
 ${jboss.partition.name:DefaultPartition}
 </property>

The partitionName property D defines a name for the cluster. Other configuration
files might call this property clusterName instead of partitionName. We talk about
the significance of this property in a bit. The cacheManager property B points to
another bean that manages JBoss Cache configurations. We talk about JBoss Cache in
the next section, but we bring this up now because the cache manager has to point to
the single JGroups channel that JBoss defines and each cache configuration must
point to a protocol stack. The cacheConfigName property C defines the name of the

Table 12.4 The various clustering service configuration files and the sections where we talk about them

Service Configuration filesa Section

The JGroups
protocol stack

jgroups-channelfactory.sar/META-INF/jgroups-channelfactory-stacks.xml 12.3.3

Session bean
load balancing

jboss-cluster-beans.xml
EJB Annotations (in your session bean)

13.3.1

SFSB replication jboss-cache-manager.sar/META-INF/jboss-cache-configs.xml
jboss-cache-manager.sar/META-INF/jboss-cache-manager-jboss-beans.xml

13.3.2

Entity cache
replication

jboss-cache-manager.sar/META-INF/jboss-cache-configs.xml
jboss-cache-manager.sar/META-INF/jboss-cache-manager-jboss-beans.xml

13.4

HTTP session
replication &
passivation

jboss-cache-manager.sar/META-INF/jboss-cache-configs.xml
jboss-cache-manager.sar/META-INF/jboss-cache-manager-jboss-beans.xml
war-deployers-jboss-beans.xml
(under server/all/deployers/jbossweb.deployer/META-INF)
WEB-INF/web.xml (in your application)
WEB-INF/jboss-web.xml (in your application)

13.2

High availability
naming service

cluster-jboss-beans.xml 13.5

a. All the configuration files are located under server/all/deploy/cluster unless specified otherwise.

B

C

D

342 CHAPTER 12 Understanding clustering
cache configuration to use. The cache manager bean is defined in server/all/deploy/
cluster/jboss-cache-manager.sar/META-INF/jboss-cache-manager.beans.xml.

 The cache configurations that the bean uses are defined in the jboss-cache-
configs.xml file in the same directory. The cache configuration looks like this:

<bean name="CacheManager" >
...
 <property name="channelFactory">
 <inject bean="JChannelFactory"/>
 </property>

This configuration points to a bean called JChannelFactory, which manages the sin-
gle multiplexed channel that JBoss provides and makes the protocol stacks available.
The file that contains this bean is /server/all/deploy/cluster/jgroups-channelfac-
tory.sar/META-INF/jgroups-channelfactory-jboss-beans.xml. This file has two impor-
tant properties that you should know about. The first property is the
multiplexerConfig property, which points to a file that contains all the protocol stack
definitions. By default, this property points to the file jgroups-channelfactory-
stacks.xml in the same directory. The second property is the nodeAddress property,
which configures the address that the channel should bind to. By default, this is set to
the ${jboss.bind.address} variable, which can be configured at startup using the –b
command line option. We discuss this more in chapter 15.

 The cache configuration file—jboss-cache-configs.xml—points to the specific stack
that the cache should use:

<cache-config name="ha-partition">
...
 <attribute name="MultiplexerStack">
 ${jboss.default.jgroups.stack:udp}
 </attribute>

The MultiplexerStack property references a JBoss variable called jboss.default.
jgroups.stack, which has a default value of udp. All the JBoss services are configured
to use the UDP protocol stack out of the box.

 The following attributes must match in order for a service to form a cluster with
identical services running on different nodes in a cluster:

■ The multicast address
■ The multicast port
■ The clusterName or partitionName property

The multicast address and port are both part of the configuration for the protocol
stack, which we discuss in the next section.

 Changing any of these three properties is adequate for defining a new partition.
To form multiple JBoss partitions within the same network, all you have to do is make
sure that each partition uses a unique combination of these three values. Try it. Start
the two nodes we set up in section 12.2, go into the cluster-jboss-beans.xml file for
node1, and change the partitionName property on the HAPartition bean. You might

343Understanding JBoss clustering
have to restart the servers when you make this change. Make sure you pull up the con-
sole windows side by side and watch the output. You’ll see that node1 leaves the parti-
tion it was in and starts its own partition. The output on node2 shows you that node1
has left the partition. Figure 12.12 shows you a before-and-after view of what happens
when you change the partition name on one node.

Don’t just change the partition name to define a new partition! Changing
the multicast address and/or port in the jgroups-channelfactory-stacks.
xml file is the recommended way of defining a unique partition. If you just
change the partition name for one node (or service) but leave the same
multicast address and port, both partitions have to filter out each other’s
traffic, and your clusters may be less performant.

Most of the clustering services configure the cluster names using the jboss.
partition.name JBoss variable or name that concatenates on top of that variable. The
default value for this variable is DefaultParition. If you want to bring up a node that
uses a different partition name, you can use the –g command-line switch. Here’s an
example that would bring up the all configuration, using MyNewPartitionName
instead of DefaultPartition:

> ./run.sh –c all –g MyNewPartitionName

Now that you’ve learned where all the configuration files for the JBoss clustering ser-
vices exist and have a big picture on how to define a unique cluster, let’s take a closer
look at how to configure the protocol stack.

12.3.3 Configuring the protocol stack

Out of the box, several JGroups protocol stacks are available for clustering services to
use. They’re defined in the following file:

server/all/deploy/cluster/jgroups-channelfactory.sar/META-INF/jgroups-
channelfactory-stacks.xml

Although several stacks are available, as we mentioned earlier, all the JBoss services are
preconfigured to use the UDP stack defined in this file. Listing 12.4 shows you what
the UDP protocol stack looks like.

Figure 12.12
On the left, the two nodes
share the same partition
name, multicast port, and
multicast address, so they
belong to the same cluster.
On the right, one or more of
these three attributes
differs, so the nodes aren’t
part of the same cluster.

WARNING

344 CHAPTER 12 Understanding clustering
<stack name="udp">
 <config>
 <UDP
 mcast_port="${jgroups.udp.mcast_port:45688}"
 mcast_addr="${jgroups.udp.mcast_addr:228.11.11.11}"
 ... />
 <PING timeout="2000" num_initial_members="3"/>
 <MERGE2 max_interval="100000" min_interval="20000"/>
 ...
 </config>
</stack>

Each protocol stack is defined with a stack element and named using the name attri-
bute of the element B. The config block C defines the stack. Each subelement of
that block defines a new protocol D. These subelements are where you set the
options for the protocols that JBoss supports. There are too many different protocol
stacks and protocols defined in this file to discuss all of them. These protocols are well
documented in the JBoss and JGroups documentation, which are referenced at the
end of this chapter.

 The main protocol that you configure in the stack is likely to be the transport pro-
tocol. You can only have a single transport protocol defined on the stack. The trans-
port protocol sits at the bottom of the stack and sends and receives message from the
network. You’ll most likely use either the UDP or the TCP protocol, but other proto-
cols are available as well.

 When would you use TCP versus UDP? In general, the TCP protocol is more reliable
than the UDP protocol and is supported by most machines connected to a WAN (for
example, the internet). If you’re configuring a cluster across a WAN, use the TCP pro-
tocol. Because TCP doesn’t support multicasting, the TCP protocol uses multiple uni-
cast instead of multicast. Multiple unicast is slower than multicast, so if you’re running
a cluster in a LAN, where UDP is supported and reliability is less of an issue, you should
probably use UDP.

 Let’s discuss configuring the UDP protocol.
CONFIGURING THE UDP PROTOCOL

If your network supports UDP, then the default UDP stack that all the JBoss services
point to should work for you. The UDP protocol configuration looks like this:

<UDP mcast_addr="${jgroups.udp.mcast_addr:228.11.11.11}"
 mcast_port="${jgroups.udp.mcast_port:45688}"
 ip_ttl="${jgroups.udp.ip_ttl:2}"
 loopback="true"
 .../>

This configuration is similar to what you see in the default JGroups configurations found
in the all configuration. You can set the multicast address using the mcast_addr attribute
and the multicast port using the mcast_port attribute. These attributes both have JBoss
variables that you can specify at server startup time to override the default values. The
ip_ttl value is used to set the multicast time-to-live value, which we discuss in the next

Listing 12.4 The multicast address and port of the UPD protocol stack

B
C

D

345Understanding JBoss clustering
subsection. If you don’t wish to use multicast, you can add the ip_mcast attribute and
set it to false to use multiple unicast (over UDP) instead.

 Most operating systems support a loopback network interface with an address
of 127.0.0.1 to facilitate IP communication without going over a real network. On
most OS’s, the loopback interface isn’t capable of forwarding multicast packets. Real
Ethernet interfaces are capable of forwarding multicast communication, but on some
OS’s (such as Windows), the Ethernet interfaces are disabled when you aren’t con-
nected to a real network. You can disable the Windows feature (called Media Sense)
that disables the Ethernet interfaces when you aren’t connected to a network. But,
reportedly, many versions of Windows still won’t forward multicast packets. Setting the
loopback attribute to true causes a sent message to be sent back up the protocol stack
to the application. Loopback is usually disabled, but on Windows machines it may be
necessary to set loopback to true if you aren’t connected to a network. Another way to
solve this problem is to use a product called the Smartronix SuperLooper Loopback
Jack & Plug by Smartronix, Inc. This is a small, inexpensive hardware loopback device
that plugs into your Ethernet port. A third way is to use multiple Microsoft Loopback
Adapters to run your JBoss AS cluster nodes as described earlier in the chapter.

 The ip_ttl attribute is used to set the IP time-to-live (TTL) value. The TTL attri-
bute is also known as a hop limit. TTL is a part of the IP protocol and is used to limit
the number of network hops that a packet can make before it’s discarded (with an
error message sent back to the sender). Each network router that gets the message
decreases the TTL value by one when it gets the message, only forwarding the message
if the resulting value is greater than zero. The TTL attribute prevents packets from get-
ting stuck in an indefinite loop inside a network.

 The TTL value is equal to the number of routers that a multicast message can hop.
The larger the TTL value you use, the farther the message can potentially propagate.
Theoretically, if you set the TTL to a very large value, a packet could propagate across
an entire network. Realistically, many routers don’t forward multicast messages at all.
The default TTL values are typically good enough for a LAN; but, if you have a cluster
that spans multiple subnets on a WAN, you might want to increase the TTL value so
that your packets don’t get dropped.

 The Internet Assigned Numbers Authority (IANA) controls the assignment of IP
multicast addresses and has designated the range of 224.0.0.0 to 239.255.255.255 for
multicast addresses. But if you’re running a cluster within a LAN, you should use the
range from 224.0.0.0 through 224.0.0.255. This range is reserved for local networks,
so routers make sure not to forward packets sent to an address within this range out-
side of your network.

 The default multicast addresses configured in the UDP stack is 228.11.11.11, which
falls outside of the LAN range; if you’re sure you’re going to run in a LAN, you should
change the address to fit within that range so that packets don’t accidentally get
routed farther than they need to. You can configure the UDP multicast address in the
protocol stack or by passing in the jgroups.udp.mcast_addr JBoss variable at startup.

 Now that you know how to configure the UDP protocol, let’s see what it takes to
configure the TCP protocol.

346 CHAPTER 12 Understanding clustering
CONFIGURING THE TCP PROTOCOL

If your network doesn’t support UDP or you want to create a network over a WAN, then
you want to use TCP instead of UDP. You can use TCP by pointing your services to the
TCP stack defined in the jgroups-channelfactory-stacks.xml file by specifying the
jboss.default.jgroups.stack JBoss variable at startup.

 You also have to make a configuration change—you have to set initial_hosts
attribute on the TCPPING protocol. Here’s an example:

<TCPPING timeout="3000" down_thread="false" up_thread="false"
 initial_hosts="localhost[7600],localhost[7601]"
 port_range="1"
 num_initial_members="3"/>

The TCP protocol doesn’t support group communication like UDP does, so automatic
discovery of nodes isn’t possible with only TCP. If you need to use TCP and are able to
use multicast as well, you can use the MPING protocol to enable multicast-based auto-
matic discovery. If you aren’t able to use multicast, you’ll have to use the TCPPING pro-
tocol, which doesn’t support automatic discovery.

 The MPING protocol is enabled by default under the TCP stack in jgroups-
channelfactory-stacks.xml file. The TCPPING protocol is available, but you must
uncomment it and comment out the MPING protocol before you can use it. The
TCPPING protocol has an initial_hosts attribute used to point to hosts that are part
of the cluster. The protocol asks the hosts for information on the coordinating node
for the cluster. If possible, configure this attribute to point to all the nodes in your
cluster to avoid complications with orphaned coordinators. After determining who
the coordinator is, the node joins the cluster by subscribing through the coordinator.
If it can’t determine who the coordinator is, the node itself will become the coordina-
tor. Our example configuration merely points the initial host to two different ports on
the local machine. You can also set the list of initial hosts using the jgroups.
tcpping.initial_hosts JBoss variable.

 You should now have a good idea of how to configure the UDP and TCP protocols
and have a gauge of all the fundamental JBoss configuration concepts pertaining to
JGroups. Now let’s take a closer look at JBoss Cache to see what features it provides
and how to configure it.

12.4 Configuring JBoss Cache
As we discussed earlier, stateful applications need to enable state replication in order
to be fault tolerant. JBoss enables state replication using JBoss Cache, a distributed
cache built on top of JGroups. JBoss Cache enables cache replication for many types of
objects including SFSBs, entities, HTTP sessions, and objects placed in JNDI.

 What exactly is a distributed cache? Imagine two cluster nodes where each has its
own cache. When the first node writes some data to the cache, that data is replicated
over the cluster to the second node. If the second node is asked for that data–say,
when the first node dies and the client is failed over to the second node–then the sec-
ond node already has the data available.

347Configuring JBoss Cache
12.4.1 Examining the JBoss Cache configuration files

Several services in the all configuration make use of JBoss Cache. The SFSB container
uses a cache to store all of its session state. The entity persistence context uses JBoss
Cache as a second-level cache for entity objects. The JBoss Web Server uses a cache to
store HTTP sessions. The HAPartition service that we talked about earlier uses a cache
to enable high-availability features for clustering services such as high-availability JNDI.
And the HTTP single-sign-on cache manages the distributed cache for a clustered sin-
gle-sign-on service. Table 12.5 lists the files that reference configurations in the jboss-
cache-configs.xml file.

These cache configurations defined in the jboss-cache-configs.xml file have various
attributes that you can configure. The most common ones are shown in listing 12.5.

<cache-config name="...">
 <attribute name="MultiplexerStack">...</attribute>
 <attribute name="BuddyReplicationConfig">...</attribute>
 <attribute name="IsolationLevel">...</attribute>
 <attribute name="CacheMode">...</attribute>
 <attribute name="CacheLoaderConfig">...</attribute>
 <attribute name="EvictionPolicyConfig">...</attribute>
</bean>

Let’s look at some of these configuration elements. We aren’t going to give you an in-
depth explanation of all the configuration elements for a cache configuration
because the JBoss Cache documentation already does a great job of covering them. We
provide you with a reference to the online JBoss Cache documentation at the end of
this chapter. For many of these configuration elements, you don’t even have to go that
far because they are self-explanatory or documented in the configuration file itself.
CONFIGURING THE JGROUPS STACK

The MultiplexerStack attribute B points to the JGroups protocol stack that the
cache should use to communicate with other nodes when replicating. We discussed
this attribute in section 12.3.

Table 12.5 Where the various jboss-cache-configs.xml caches are referenced from for each service

Replicated cache Configuration file

HA Partition Cache deploy/cluster/cluster-jboss-beans.xml

Stateful session bean cache Annotations on your SFSB (default annotations defined as aspects in
deploy/ejb3-interceptors-aop.xml)

Entity bean cache deployers/ejb3.deployer/META-INF/persistence.properties

HTTP session cache deployers/jbossweb.deployer/META-INF/war-deployers-jboss-beans.xml

HTTP single-sign-on cache Hardcoded to clustered-sso, which is aliased to ha-partition in the jboss-
cache-manager-jboss-beans.xml file

Listing 12.5 Common configuration elements found in JBoss Cache cache configuration

B
C

D
E

F
G

348 CHAPTER 12 Understanding clustering
CONFIGURING BUDDY REPLICATION

By using the BuddyReplicationConfig property C, you can enable buddy replica-
tion, specify the number of buddies that a node should have, define a communication
timeout, and more. The configuration details pertaining to buddy replication are cov-
ered well in the JBoss Cache documentation. To see an example of a buddy replication
configuration, take a peek at the cache config with the name standard-session-cache.
This configuration is used by JBoss Web Server to manage HTTP sessions replication.

 The single-buddy replication configuration that we showed you in figure 12.6 can
work quite well in many environments. Using this configuration with a TCP JGroups
channel should give you better performance than with a UDP channel.
CONFIGURING THE ISOLATION LEVEL

The IsolationLevel property D can be used to set the transaction isolation level for
updates to the distributed cache. The isolation level’s options are similar to those
found in a database, as follow:

■ SERIALIZABLE
■ REPEATABLE_READ (the default value)
■ READ_COMMITTED
■ READ_UNCOMMITTED
■ NONE

The trade-off between these options is also the same as that in a database. Namely, the
more isolation you have (SERIALIZABLE), the more locking and worse performance.
The less isolation you have (NONE), the less locking you have and more dirty data.
CONFIGURING THE CACHE MODE

The CacheMode property E specifies the strategy that the cache uses for replicating
with other nodes in the cluster. We described the various replications strategies in sec-
tion 12.1.5. Table 12.6 lists the available replication modes.

Table 12.6 The different cache replication modes that can be provided to the CacheMode property

cacheModeString
option

Cache mode Summary

REPL_SYNC Synchronous
replication

Used for session data or cached entity data. Has the greatest fault tol-
erance, but is slow if the network is unreliable, if multicast can’t be
used, or if inter-node latency is great. High availability can be achieved
by load balancing requests across all nodes in the cluster. With an
entity cache, only synchronous replication ensures a consistent cache.

REPL_ASYNC Asynchronous
replication

Used for session data or cached entity data. Has similar performance
to no replication, but doesn’t guarantee fault tolerance because state
replication may not have completed before failover occurs. Don’t use
this mode for an entity cache unless you don’t care about reading stale
data from your cache. Load-balancing strategies that change servers
across requests, such as round-robin and random, should be avoided.
Use sticky-session load balancing and failover to achieve the best pos-
sible fault tolerance.

349Configuring JBoss Cache
CONFIGURING THE CACHE LOADER

The CacheLoaderConfig property (F in listing 12.5) defines a cache loader for the
cache. In JBoss Cache, a cache loader is a component of the caching framework that
knows how to read and write the data in a cache to and from a secondary datastore
such as a database or a filesystem. In terms of clustering, cache loaders come in handy
when you want to passivate session data for HTTP sessions and stateful EJBs. We talk
about how to enable and configure the cache loader for HTTP sessions and stateful
EJBs in chapter 13.
CONFIGURING THE EVICTION POLICY

The EvictionPolicyConfig property G specifies the eviction policy for the cache.
The policy is defined using the policyClass attribute under the config block. Here’s
an example that defines an LRU eviction policy:

<attribute name="policyClass">
 org.jboss.cache.eviction.LRUPolicy
</attribute>

The entity cache and SFSB cache in the all configuration both use an LRU eviction
scheme by default. Table 12.7 lists the main eviction policies.

INVALIDATION
SYNC

Synchronous
invalidation

Used for cached entity data. Invalidation can happen much faster than
replication, but at the expense of having to load data from a data
source on a cache miss. With synchronous invalidation, all nodes must
verify that they’ve been invalidated before the request can continue
being processed.

INVALIDATION
ASYNC

Asynchronous
invalidation

Used for cached entity data. The invalidation happens faster when asyn-
chronous, but cache misses still require a read from a data source.

LOCAL No replication
(cache is local
to node)

No replication is fast, but there is no fault tolerance at all. Use sticky
sessions to avoid hitting nodes that don’t have the user’s state. High
availability can be achieved via failover.

Table 12.7 The different eviction policies that can be specified in the defaultEvictionPolicy-
 Class property

Eviction policy
What’s evicted when thresholds

are met

org.jboss.cache.eviction.LRUPolicy Least recently used nodes (default)

org.jboss.cache.eviction.LFUPolicy Least frequently used nodes

org.jboss.cache.eviction.MRUPolicy Most recently used nodes

org.jboss.cache.eviction.FIFOPolicy Creates a first-in-first-out queue
and evicts the oldest nodes

org.jboss.cache.eviction.NullEvictionPolicy Nothing

Table 12.6 The different cache replication modes that can be provided to the CacheMode property (continued)

cacheModeString
option

Cache mode Summary

350 CHAPTER 12 Understanding clustering
The cache can be broken up into regions based on cached components. Each region
can specify its own configuration for the eviction policy, allowing you to evict some
cached instances at a different frequency than others. Most JBoss clustering services
make the regions correspond to different class or package names. By default, no regions
are defined, and every cached component is bound into a region called /_default_.

 Let’s say you’re configuring the entity cache and would like to make an entity
called com.manning.jbia.MyEntity evict at a different rate than every other bean
bound in the default region. You can define a region for your entity using the region
element as shown in listing 12.6.

<cache-config name="...">
 ...
 <attribute name="EvictionPolicyConfig">
 <config>
 <region name="/_default_"
 policyClass="org.jboss.cache.eviction.LRUPolicy">
 <attribute name="maxNodes">10000</attribute>
 <attribute name="timeToLiveSeconds">1000</attribute>
 <attribute name="minTimeToLiveSeconds">120</attribute>
 </region>
 <region name="/com/manning/jbia/MyEntity"
 policyClass="org.jboss.cache.eviction.LRUPolicy">
 <attribute name="maxNodes">100</attribute>
 <attribute name="timeToLiveSeconds">100</attribute>
 <attribute name="minTimeToLiveSeconds">50</attribute>
 </region>
 </config>
 </attribute>
</cache-config>

Here, two regions are defined: the default region B and another for the entity C.
The two regions define the same type of policy but have different attributes for the
number of nodes and time-outs.

 Knowing how to enable the cache is one thing; deciding what type of data to cache
is another. Let’s talk a little about that.

12.4.2 Deciding what to cache

Caches are particularly good for data that’s used often by many users and seldom
changes. For example, reference data, such as category lists or days of the month,
would be good candidates for caching. Some bad examples would be data that
changes all the time, such as financial data or data only used for an individual user.

 Another particularly bad type of data to cache is anything accessed by other appli-
cations not participating in the distributed cache. Because these applications don’t
participate in the cache, the cache hit/miss ratio becomes much less predictable, and
the cache becomes less reliable.

Listing 12.6 Defining different eviction policies for different regions of cache

B

C

351Summary
12.5 Summary
In this chapter, you’ve learned the fundamentals necessary to understand and work
with clusters in JBoss. In the first section, we laid a foundation for clustering by walk-
ing you through some of the basic concepts. We started with load balancing and
talked about how load balancing helps achieve high availability and fault tolerance.
Next, we talked about horizontal and vertical clustering topologies and the pros and
cons in terms of scalability and high availability. We also talked about the trade-offs of
having a uniform cluster with all nodes having an identical set of applications
deployed to them.

 After that, we talked about the fundamental concepts of multicasting and auto-
matic discovery. Then we talked about high availability and uptime, and we described
how stateless applications can become highly available through load balancing,
whereas stateful application can use failover to become highly available. Stateful appli-
cations may further provide fault tolerance by ensuring that the client state is available
on any machine that they fail over to. We talked about the different state-replication
strategies that could help enable fault tolerance. We also introduced you to the con-
cept of buddy replication and discussed what the potential performance and high-
availability trade-offs are between total and buddy replication.

 We then discussed state passivation, where you learned about how to store client
state for various application components in a secondary data store. Finally, we talked
about application clustering versus application distribution, with a recommendation
to favor clustering over distribution as a means to achieve scalability.

 In the next section, we showed you how to set up a vertical cluster on a single
machine. We built, deployed, and tested a clustered EJB application and showed how
easy it is to take advantage of JBoss clustering.

 Next, we took a closer look at how to configure a cluster. We started by looking at
the JGroups architecture; then we looked at the main JBoss clustering services to see
how the different components of the JGroups architecture are configured. In particu-
lar, we took a closer look at the JGroups protocol stack and how to configure it for the
TCP and UDP protocols.

 Many of the clustering services build on top of JBoss cache, so we devoted the last
section of this chapter to JBoss Cache. We looked at the various places where JBoss
cache is used and talked about how to configure buddy replication, isolation, cache
loaders, and eviction policies. We then talked about how to decide what type of data is
worth caching.

 This chapter gave you an understanding of the basics of JBoss clusters, JBoss Cache,
and JGroups, as well as the background you need to enable clustering features such as
EJB load balancing and HTTP session replication. We’ll dive into these topics in the
next chapter, building on and referencing back to this chapter.

352 CHAPTER 12 Understanding clustering
12.6 References
The JGroups documentation on the JGroups website —http://www.jgroups.org
A section dedicated to JGroups on the JBoss website —http://www.jboss.org/community/docs/

DOC-10878
The JBoss Cache website with links to tutorials and documentation —http://labs.jboss.com/

jbosscache/
How to install the Microsoft Loopback Adapter in Windows XP —http://www.windowsnetwork-

ing.com/articles_tutorials/Install-Microsoft-Loopback-adapter-Windows-XP.html
How to add Multiple IP Addresses in Windows 2000, XP, 2003 —http://www.itsyourip.com/network-

ing/how-to-add-multiple-ip-address-in-windows-2000xp2003/
Multicast Loopback —http://www.29west.com/docs/THPM/multicast-loopback.html
The Smartronix SuperLooper Loopback Jack & Plug —http://www.computercablestore.com/

Smartronix_SuperLooper_Lo_PID3632.aspx

http://www.jgroups.org
http://www.jboss.org/community/docs/DOC-10878
http://www.jboss.org/community/docs/DOC-10878
http://labs.jboss.com/jbosscache/
http://labs.jboss.com/jbosscache/
http://www.windowsnetworking.com/articles_tutorials/Install-Microsoft-Loopback-adapter-Windows-XP.html
http://www.windowsnetworking.com/articles_tutorials/Install-Microsoft-Loopback-adapter-Windows-XP.html
http://www.itsyourip.com/networking/how-to-add-multiple-ip-address-in-windows-2000xp2003/
http://www.itsyourip.com/networking/how-to-add-multiple-ip-address-in-windows-2000xp2003/
http://www.29west.com/docs/THPM/multicast-loopback.html
http://www.computercablestore.com/Smartronix_SuperLooper_Lo_PID3632.aspx
http://www.computercablestore.com/Smartronix_SuperLooper_Lo_PID3632.aspx

Clustering
 JBoss AS services
In chapter 12, you learned about the basic concepts of clustering, experimented
with a simple cluster, and learned how to configure the underlying tools that
enable clustering in JBoss, such as JGroups and JBoss Cache. In this chapter, we
build on top of what you learned in chapter 12 to show you how clustering applies
to specific Java EE components and technologies. We explore how JBoss Cache can
be used to provide state replication for web applications, SFSBs, and the Hibernate
entity cache. You learn how load balancing can be enabled through an upstream
hardware or software load balancer for web applications, and via dynamic proxies
for EJBs. We also look at JBoss’s high-availability JNDI service and see how JNDI look-
ups can be load balanced across a replicated JNDI cluster.

This chapter covers
■ HTTP load balancing
■ HTTP session replication
■ Clustering session EJBs
■ Clustering entities
■ High-availability JNDI
353

354 CHAPTER 13 Clustering JBoss AS services
Table 13.1 lists the various Java EE application components and the clustering require-
ments they have.

 We explore many of these clustering requirements, starting with HTTP load
balancing.

13.1 HTTP load balancing
If you’re hosting a web application that needs to be highly available or needs to scale
to handle a large number of users, then you need to load balance requests across mul-
tiple nodes. Contrary to popular belief, load balancing a web application doesn’t nec-
essarily require a cluster. If your application is completely stateless, a cluster is
unnecessary. If you have a stateful application, then you probably want to use sticky-
session load balancing, but creating a JBoss cluster still isn’t necessary unless you need
to be fault tolerant. If your stateful application needs fault tolerance, then you need a
cluster so that you can do state replication. We talk about state replication for HTTP
sessions, stateful-session EJBs, and entity caches later in the chapter.

 As we discussed in chapter 12, load balancing happens upstream from the systems
that the load is being balanced across. To balance HTTP traffic, you must introduce a
load balancer in front of your web servers. All clients direct their requests to the load
balancer, which acts as a proxy to the servers running the web application.

 Figure 12.2 showed you a typical network topology where a load balancer runs
inside of the DMZ and forwards requests to JBoss instances that run behind the fire-
wall. With this topology, the load balancer provides scalability while the application
servers are protected by being behind the firewall. The load balancer can be a hard-
ware load balancer or a software load balancer. Software load balancers are typically in
the form of native web servers that provide a mechanism for load balancing across
JBoss instances. Let’s look at how to configure both hardware and software load bal-
ancers for web applications.

Table 13.1 The clustering requirements for various Java EE components

Object/Component
Requires load

balancing?
Requires state

replication?

Servlet/JSP Yes Yes

EJB SLSB Yes No

EJB SFSB Yesa Yes

EJB Entity Nob Yesc

EJB MDB Yes No

JNDI object Yes Yes

a. You must have sticky-session load balancing.

b. EJB 2.x Entity Beans could be called remotely, but in EJB3, they can’t.

c. If you’re using Hibernate’s 2nd level cache.

355HTTP load balancing
13.1.1 Load balancing with native web servers

As we discussed in chapter 5, Tomcat provides HTTP and AJP connectors. The AJP pro-
tocol is a TCP-based binary protocol made specifically for communicating with appli-
cation servers such as JBoss Web Server. Although the AJP protocol is binary and was
created to provide performance benefits over the HTTP protocol, you may not get a
performance benefit in your application depending on the type of load that you have.
You should test both connectors and see which one works better for you.

 Most native web servers have support for the AJP protocol. Apache Web Server, IIS,
and SunOne support the AJP protocol through different plug-ins or modules. A link
with a list of these modules and installation instructions can be found at the end of
this chapter.

 Apache ships with a plug-in called mod_proxy that supports both HTTP and AJP load
balancing. Many people find mod_proxy to be significantly easier to configure even
though mod_jk has a longer history and is considered more stable. There are other
plug-ins available as well. Each plug-in has different versions that work with different
versions of the native web server that you’re using. Different combinations of native web
servers and plug-ins have their own unique configuration and performance pros and
cons. Unfortunately, it’s outside the scope of this book to explain how to install and con-
figure the various plug-ins in the different native web servers. With a little bit of search-
ing online, you should be able to find an article or two that cover the details of the
particular web server and plug-in combination that you’re trying to install. We have a
few links at the end of the chapter that show you how to install some of the more pop-
ular combinations. We had good luck with Apache 2.2.9 and mod_jk 1.2.26 while test-
ing things out for the book.

 After you get the native web server installed and the appropriate plug-in config-
ured, you’re almost ready to load balance requests to JBoss. If you want your native
web server to be able to use sticky-session load balancing across your JBoss instances,
you must make a change in the JBoss Web Server configuration on each of the applica-
tion servers you’re load balancing to. In the server/xxx/deploy/jbossweb.sar/server.
xml file, define a jvmRoute attribute on the Engine element, where the value of the
attribute is unique among the JBoss AS server instances you’re running. The jvmRoute
setting isn’t present in the server.xml file, so you’ll have to add it to the Engine defini-
tion. After configuring the server.xml file, it should look like this:

<Service name="jboss.web">
 <Connector .../>
 <Connector .../>
 <Engine name="jboss.web"
 defaultHost="localhost"
 jvmRoute="node1">

The value of the jvmRoute attribute matches a logical name defined in the load-
balancer configuration for the native web server plug-in. For example, if you’re using
mod_jk, the value of the jvmRoute attribute should be set to the name of the worker.

356 CHAPTER 13 Clustering JBoss AS services
 If you’re trying this out with multiple JBoss instances and want to see which server
is being hit on a given request, you might try uncommenting the RequestDumperValve
in the server.xml file. Then you can watch the console output (or tail the server log) to
see which JBoss AS instance is handling the request. If you don’t have a jvmRoute spec-
ified on each JBoss AS instance, you’ll see requests switch servers each time you load a
page. If you define jvmRoute attributes and your native web server plug-in supports
sticky sessions, then you should see the requests from one browser session going to the
same server. But if you open a different browser or access the native web server from
another machine, then you’ll see the requests forward to a different JBoss AS instance.

 We just showed you how to configure a native web server to perform load balanc-
ing, but you may use a hardware load balancer instead.

13.1.2 Load balancing with hardware

Load balancing can also be done with hardware. One of the more popular hardware
load balancers is the F5 BIG-IP, but other brands may work just as well.

 The main things to look for in a hardware load balancer are support for passive or
active cookie persistence and SSL persistence. Cookie persistence is the ability for a
load balancer to store a cookie on the client’s web browser on the first request. The
cookie helps route consecutive client calls to the same server accessed on the first
request. In passive cookie persistence, the application server creates its own cookie
that’s passed to the client, and the load balancer uses part of the cookie to interpret
the routing information. In active cookie persistence, the load balancer stores its own
cookie on the client’s web browser. SSL persistence is used when SSL is enabled. The
load balancer handles all encryption and decryption with the client and stores a
cookie on the client’s browser to know which node to forward to.

 Load balancing can make web applications highly available; but, if you have appli-
cation state you’re keeping in an HTTP session and you want to be fault tolerant, you
need to enable HTTP session replication.

13.2 HTTP session replication
Web applications often keep state in HTTP session attributes. Depending on the
nature of your application, you may keep all your application state here or, perhaps,
only login credentials and presentation state. Nonetheless, if you want a totally fault-
tolerant application, you need to make sure your web session state is replicated.

13.2.1 Configuring replication

The all configuration is capable of replicating HTTP session state, but you must tell
your application to take advantage of this feature. To enable your web application to
use session replication, you must add the distributable element to your applica-
tion’s WEB-INF/web.xml file as follows:

<web-app>
 <distributable/>
 ...
</web-app>

357HTTP session replication
If you don’t add this element to your application’s WEB-INF/web.xml file, your appli-
cation’s HTTP sessions don’t participate in the distributed cache, even though the dis-
tributed cache is enabled and other applications within your server may be using it.

 HTTP session replication is built on top of JBoss Cache, which we discussed in
chapter 12. The HTTP session cache is configured in the standard-session-cache
cache configuration in the server/all/deploy/cluster/jboss-cache-manager.sar/META-
INF/jboss-cache-configs.xml file.

 This file has several configurable attributes for session replication, all of which are
fairly well documented in the file comments. The preconfigured settings in the all
configuration should be good enough to get you started. By default, the CacheMode is
set to synchronize asynchronously. If you change this to be synchronous, you may want
to check the SyncReplTimeout, which determines how long the cache will wait to
timeout until other nodes confirm that they’ve synchronized. The default value in
JBoss AS CR1 is 17500, which might be pretty high. The cache is also configured to use
single-node buddy replication, which should be fine for most uses, but can be
increased if necessary.

13.2.2 Understanding session usage

HTTP sessions are accessed through the Servlet API. The session provides the ability to
get and set attributes (objects) stored in a map in the session with a string as the key.
In the JBoss all configuration the session is backed by JBoss Cache; when one node
puts an attribute into the session, it’s replicated to the other nodes. Let’s say you have
a servlet that is reading an attribute out of the session:

HttpSession session = request.getSession();
Employee emp = (Employee) session.getAttribute("employee");
String firstName = emp.getFirstName();

Would you expect the session to replicate the attribute to other nodes in your cluster?
No, because all you’re doing is getting the employee attribute out of the session and
reading values out of it. But, what if you did this:

HttpSession session = request.getSession();
Employee emp = (Employee) session.getAttribute("employee");
emp.setFirstName("Javid");

Would you expect the employee attribute to be replicated? Yes, you’d probably want
the change to the first name replicated across the cache. In these two examples, the
servlet code is interacting with the session API in the same exact way; it’s just reading
the attribute using the getAttribute() method. But the servlet code may change the
object that you get out of the session, so you need a mechanism for triggering replica-
tion based on updates only.

 Replication triggering can be configured in the replication-config element of
your application’s WEB-INF/jboss-web.xml file:

<jboss-web>
 <replication-config>
 <replication-trigger>

358 CHAPTER 13 Clustering JBoss AS services
 SET_AND_NON_PRIMITIVE_GET
 </replication-trigger>
 </replication-config>
</jboss-web>

The replication-trigger attribute is used to specify the type of session access that
triggers a replication. The four possible values are listed in table 13.2.

If you use the SET option, you have to make sure any objects you’ve retrieved from the
session and updated are set back into the session.

HttpSession session = request.getSession();
Employee emp = (Employee) session.getAttribute("employee");
emp.setFirstName("Javid");
session.setAttribute("employee", emp);

The SET_AND_NON_PRIMITIVE_GET option is the default. There’s no need to replicate
when the object retrieved is a primitive wrapper type because those objects are immu-
table. Because they’re immutable, you never run into the issue of updating a shared
reference to the object. The only way to change them in the session is to do a set call:

HttpSession session = request.getSession();
Integer count = (Integer) session.getAttribute("count");
count = count + 1; //count is immutable; creates new object
session.setAttribute("count", count);

Besides determining what triggers a replication, you also have to determine what gets
replicated. You could have the entire session object get replicated when the replica-
tion gets triggered, or you could replicate the modified attribute. Better yet, you could
replicate a single field of the modified attribute.

Table 13.2 A summary of the various replication-trigger options available for HTTP
 session replication

Replication-trigger option Description

SET Replication occurs only if an attribute is put into the session
using a set call. If you get an attribute out of the session and
modify its value, the value isn’t replicated.

SET_AND_GET All set and get calls on any attributes trigger state replication.
This option can be significantly slower than the SET option.

SET_AND_NON_PRIMITIVE_GET Behaves the same as SET_AND_GET except it only replicates
on a get if the attribute received isn’t a wrapper for a primitive
data type (for example, Integer, Long, and so on). This option is
the default.

ACCESS Triggers a replication on every request that accesses the ses-
sion. This option is generally slow, but it ensures the session
timestamp is synchronized between all nodes in a cluster, pre-
venting the session from being evicted in one cache while
remaining in others.

359HTTP session replication
 The replication-granularity attribute in the WEB-INF/jboss-web.xml file speci-
fies the granularity of the data that gets replicated upon a trigger:

<jboss-web>
 <replication-config>
 <replication-granularity>SESSION</replication-granularity>
 </replication-config>
</jboss-web>

The options for this attribute are shown in table 13.3.

More information on these and other options related to replication can be found in
the DTD file corresponding to the jboss-web.xml deployment descriptor. The DTD file
can be found in docs/dtd/jboss-web_5_0.dtd under the top level of the JBoss installa-
tion. Field-level replication can provide significant performance advantages for many
applications. Let’s take a closer look.

13.2.3 Using field-level replication

Field-level replication takes advantage of JBoss Cache’s fine-grained replication fea-
ture, which replicates only the changed parts of an object. If you update a field on an
object, only that field is replicated. Field-level replication can tremendously cut down
the amount of data replication, increasing your application’s throughput. We refer-
ence an article at the end of the chapter that talks about benchmark results for differ-
ent object sizes and load scenarios.

 JBoss ships with a cache configuration that supports field-level replication. To enable
JBoss Web Server to use this cache configuration, you have to modify the WebApp-
ClusteringDefaultsDeployer bean in the server/all/deployers/jbossweb.deployer/
META-INF/war-deployers-beans.xml file. In that bean, you must change the cacheName
property from standard-session-cache to field-granularity-session-cache.

 You also need to set the replication-granularity field in your application’s WEB-
INF/jboss-web.xml file as follows:

<jboss-web>
 <replication-config>
 <replication-granularity>FIELD</replication-granularity>

Table 13.3 A summary of the different replication-granularity options available for HTTP
 session replication

Replication-granularity
option

Description

SESSION The entire session is replicated upon a replication trigger. This option is the
default and is preferred when the sessions are generally small in size.

ATTRIBUTE Only dirty session attributes are updated in addition to some session data
(such as the lastAccessTime).

FIELD Only dirty fields on an object are updated.

360 CHAPTER 13 Clustering JBoss AS services
 <replication-field-batch-mode>
 true
 </replication-field-batch-mode>
 </replication-config>
</jboss-web>

An additional attribute, called replication-field-batch-mode, is pertinent to field-
level replication and can be set in this file (as shown in the example). This Boolean
attribute specifies whether field-level replication should happen immediately or not.
When set to false, replication happens immediately. When set to true—the
default—the session batches all the field-level updates and replicates them all at the
end of the request. We advise you to leave this attribute set to true to minimize unnec-
essary network traffic.

 Last, you need to make sure any classes you wish to put into the session are anno-
tated with the @org.jboss.cache.pojo.annotation.Replicable annotation, like the
following:

@Replicable
public class Employee {
 ...
}

Now, let’s take a look at how to enable passivation for HTTP sessions.

13.2.4 Configuring passivation

In chapter 12, we introduced you to the topic of session passivation. HTTP session pas-
sivation is enabled by default in both the standard-session-cache cache configura-
tion and the field-granularity-session-cache cache configuration. Looking in the
jboss-cache-configs.xml file, you see that both cache configurations define a Cache-
LoaderConfig that has passivation enabled:

<attribute name="CacheLoaderConfig">
 <config>
 <passivation>true</passivation>
 <shared>false</shared>
 <cacheloader>
 <class>org.jboss.cache.loader.FileCacheLoader</class>
 <properties>
 location=${jboss.server.data.dir}${/}session
 </properties>
 <async>false</async>
 ...
 </cacheloader>
 </config>
</attribute>

The passivation property B controls how the cache interacts with the cache loader.
If this property is set to true, the cache uses the cache loader to write to the secondary
datastore only when a node is evicted from memory. If this property is set to false,
then all changes are written as soon as they happen. Having the shared property C

B
C

D

E

F

361Clustering session beans
set to false tells the cache that the cache loader isn’t shared by multiple caches, but is
unique to this cache. The class D tells you which type of cache loader you’ll use. By
default the HTTP session cache loader writes to a file. The location property E
defines where the passivated sessions will be stored by the cache loader. By default,
the cache loader is configured to read and write from a file in the configuration’s data
directory. The async attribute F defines whether the passivation is synchronous
or asynchronous.

 After configuring the server to support a cache loader, you must tell your web
application to enable passivation in the META-INF/jboss-web.xml file. If you don’t
enable passivation in a particular application, its sessions aren’t passivated. To enable
passivation, you must provide the following configuration:

<max-active-sessions>20</max-active-sessions>
<passivation-config>
 <use-session-passivation>TRUE</use-session-passivation>
 <passivation-min-idle-time>5</passivation-min-idle-time>
 <passivation-max-idle-time>10</passivation-max-idle-time>
</passivation-config>

The max-active-sessions property tells the web container’s session manager how
many sessions it should keep active in memory. The passivation-config block is nec-
essary to enable passivation. In particular, the use-session-passivation field must
be set to TRUE in order to use passivation. The min- and max-idle-time options are
used to define the minimum and maximum number of seconds a session is allowed to
sit idle before it’s eligible for passivation.

 Now that we’ve discussed the many aspects of HTTP session clustering, let’s talk
about clustering session beans.

13.3 Clustering session beans
There are two main reasons to cluster session beans. The first reason is to load bal-
ance session-bean requests across multiple EJB servers. In the discussion of HTTP, you
saw that you don’t need a cluster to achieve load balancing. But with session beans,
the dynamic proxy acts as a load balancer, and having a cluster gives you the benefit of
having the proxy automatically get updated with the list of nodes it should load bal-
ance across. Having the client receive an updated list of server nodes is useful when
you’re calling session beans remotely. As we talked about in chapter 12, we generally
recommend not distributing the web tier and EJB tier of an application, so for many
web applications, load balancing EJBs may not be necessary because load balancing
occurs at the HTTP request level. But if you have a standalone client that must load-
balance across EJB servers, JBoss clustering makes it easy.

 Both stateful and stateless session beans make use of load balancing. SFSBs need
sticky-session load balancing to achieve server affinity. SLSBs can make use of random
or round-robin load balancing.

 The second reason to cluster session beans is to enable state replication for SFSBs,
allowing you to achieve fault tolerance for a stateful application. Let’s look at how

362 CHAPTER 13 Clustering JBoss AS services
to configure both load balancing and replication for session beans, starting with
load balancing.

13.3.1 Load balancing session beans

To enable a session bean to be clustered, you must run in the all configuration, and
you must annotate the bean with the @org.jboss.ejb3.annotation.Clustered anno-
tation. Here’s an example of a clustered SLSB:

@Stateless
@Clustered
public class SomeBean implements SomeBusinessInterface {
 public void someWonderfulMethod() {
 // Do something cool
 }
}

Believe it or not, that’s all you have to do so long as you want to use the default parti-
tion—specified by the –g command-line option as we discussed in chapter 12—and
you want to use round-robin load balancing. If you want to change either of these, you
can do so by passing in arguments to the annotation. Here’s an example of how to use
the annotation to define both the loadBalancePolicy and the partition:

@Clustered(loadBalancePolicy="RoundRobin", partition="MyPartition")

The loadBalancePolicy attribute must be a string that refers to the name of a class
(without the package name) that implements the org.jboss.ha.framework.inter-
faces.LoadBalancePolicy interface. This class can be a standard JBoss load-balancing
policy that exists in the org.jboss.ha.framework.interfaces package, or you can
write your own class that implements the LoadBalancePolicy interface, and put the class
in the same package as your bean. JBoss provides the policies in table 13.4 out of the box.

Table 13.4 The out-of-the-box load-balancing policies, which are all in the
 org.jboss.ha.framework.interfaces package

Load-balancing policy Description

FirstAvailable Each client’s dynamic proxy for an EJB randomly
selects a target node and sticks with that node for
all calls on the proxy. If the node dies, another node
is randomly selected. This load-balancing policy is
also known as sticky-session load balancing.

FirstAvailableIdenticalAllProxies All clients’ dynamic proxies for an EJB stick with the
same randomly selected node. If the node dies,
another node is randomly select.

RandomRobin Every request to an EJB is directed to a random
node in the server.

RoundRobin The dynamic proxy cycles across the list of nodes in
the cluster sequentially.

http://docs.jboss.org/jbossas/javadoc/4.0.4/cluster/org/jboss/ha/framework/interfaces/FirstAvailable.html" \o "class in org.jboss.ha.framework.interfaces
http://docs.jboss.org/jbossas/javadoc/4.0.4/cluster/org/jboss/ha/framework/interfaces/FirstAvailableIdenticalAllProxies.html" \o "class in org.jboss.ha.framework.interfaces
http://docs.jboss.org/jbossas/javadoc/4.0.4/cluster/org/jboss/ha/framework/interfaces/RandomRobin.html" \o "class in org.jboss.ha.framework.interfaces
http://docs.jboss.org/jbossas/javadoc/4.0.4/cluster/org/jboss/ha/framework/interfaces/RoundRobin.html" \o "class in org.jboss.ha.framework.interfaces

363Clustering session beans
When the client downloads the dynamic proxy for a clustered EJB from JNDI, the
proxy already knows about all the nodes in the cluster. Every time the client makes a
request to the server using the dynamic proxy, the proxy is given an updated list of
nodes in the cluster. Receiving an updated list prevents the client from sending
requests to nodes that are no longer available in the cluster (whether they’ve failed or
they’ve purposely been removed). And because JBoss uses self-forming clusters, this
happens automatically without needing to reconfigure the cluster.

13.3.2 Replicating stateful session beans

Enabling clustering on a SFSB is almost exactly the same as with a SLSB. Annotate the
bean with the @org.jboss.annotation.ejb.Clustered annotation.

@Stateful
@Clustered
public class SomeBean implements SomeBusinessInterface {
 public void someMethod() {
 // Do something
 }
}

Just like with SLSBs, you can define the partition attribute on the @Clustered annota-
tion. The only difference between specifying the @Clustered annotation on a stateful
and a stateless session bean is that you can’t use a load-balancing policy other than
FirstAvailable with stateful beans. This value is the default, so you don’t need to
specify the load-balancing policy at all.

 The cache used to store and replicate the state of the SFSB can be con-
figured in the server/all/deploy/cluster/jboss-cache-manager.sar/META-INF/jboss-
cache-configs.xml file, under the sfsb-cache cache configuration.

 You can apply the @org.jboss.ejb3.annotation.CacheConfig annotation to your
SFSB class declaration to configure entity-specific cache configuration:

public @interface CacheConfig
{
 String name() default "";
 int maxSize() default 10000;
 long idleTimeoutSeconds() default 300;
 boolean replicationIsPassivation() default true;
 long removalTimeoutSeconds() default 0;
}

The maxSize and idleTimeoutSeconds attributes control passivation. The removal-
TimeoutSeconds defines the timeout at which idle beans are removed altogether. The
replicationIsPassivation attribute tells the container whether to invoke EJB3
@PrePassivate callbacks before replicating (that is, serializing) a session and @Post-
Activate after pulling it from the cache and giving it to the application. Passivation
can be configured using the cacheLoaderConfig, which is similar to what we’ve
already discussed for HTTP session passivation in section 13.2.4.

 Now that you’ve learned about clustering session EJBs, let’s learn about clustering
entity EJBs.

364 CHAPTER 13 Clustering JBoss AS services
13.4 Clustering entities
In previous versions of EJB, entity beans were remotely accessible (even though it
wasn’t generally recommended). In JPA, entities aren’t accessible remotely, so you
wouldn’t cluster entities for the purpose of load balancing; but we do care about state
replication and high availability.

 The EJB3 specification says nothing about entity caching, but JBoss uses Hibernate
as its JPA implementation, which has a pluggable second-level cache. By pluggable, we
mean you can plug in different cache implementations that Hibernate can use. Take a
wild guess which cache implementation Red Hat decided to preconfigure Hibernate/
JPA with? You guessed it—JBoss Cache. Why? JBoss Cache is distributed, transactional,
and is already built into JBoss.

 JBoss Cache has support for caching four types of data: entities, collections, query
results, and timestamps. This data is either replicated or invalidated across the cluster,
dramatically reducing the number of database queries your application has to make.
We have a few links at the end of the chapter that give you good background and in-
depth coverage to the way Hibernate uses the second-level cache and on how to con-
figure Hibernate with JBoss Cache.

13.4.1 Replicating the entity cache

We introduced JBoss Cache in chapter 12 and gave you an overview of how to config-
ure it. Entities can use several cache configurations. You must configure your JPA per-
sistence context and your beans to use the entity cache because you might not want all
your entity types to participate in the cache, as we discussed in chapter 12. Queries
generated by Hibernate can be cached too. Let’s look at how to enable the persistence
context and how to enable individual entities to use JBoss Cache.
HOOKING THE CACHE INTO JPA

Before you configure entities to use the cache, you must configure JPA to know about
the cache. You can do this by specifying the following properties under the persis-
tence-unit element in your application’s META-INF/persistence.xml file:

<persistence-unit name="tempdb" transaction-type="JTA">
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 <property
 name="hibernate.cache.region.factory_class"
 value=
 "org.hibernate.cache.jbc2.JndiMultiplexedJBossCacheRegionFactory"/>
 <property
 name="hibernate.cache.region.jbc2.cachefactory"
 value="java:CacheManager"/>
 <property
 name="hibernate.cache.region.jbc2.cfg.entity"
 value="optimistic-entity"/>
 <property
 name="hibernate.cache.region.jbc2.cfg.collection"
 value="optimistic-entity"/>

B

C

D

E

365Clustering entities
 <property
 name="hibernate.cache.region.jbc2.cfg.ts"
 value="timestamps-cache"/>
 <property
 name="hibernate.cache.region.jbc2.cfg.query"
 value="local-query"/>
 </properties>
</persistence-unit>

The hibernate.cache.region.factory_class property B points to the class that
ties Hibernate into JBoss Cache. The hibernate.cache.region.jbc2.cachefactory
property C points to the particular JBoss Cache instance using a JNDI name. The
default JNDI binding for this cache is java:CacheManager, as shown in the example.
The JBoss Cache instance defined by B has different regions for the different types
of data that can be stored in the cache. Each of these data types is configured by
pointing to a cache configuration. The properties for these data types are specified
using D, E, F, and G.

 The entity cache is used to store entity objects by id. The collection cache is used to
store entity collection references. If you have an entity with a set or a list that refer-
ences another entity, those references would be stored in the collection cache. The
query cache is used to cache which queries and query parameters result in which enti-
ties. If the query result is available in the query cache, then it will be retrieved from
the entity cache, or the database if not cached. The timestamp cache is used in con-
junction with the query cache to keep track of the timestamps for the queries and the
entities to make sure that query results aren’t stale. Let’s see what different cache con-
figurations are available.
CHOOSING A CACHE CONFIGURATION

As with all the other cache configurations, these configurations can be found in the
server/all/deploy/cluster/jboss-cache-manager.sar/META-INF/jboss-cache-con-
figs.xml file. Table 13.5 summarizes the cache configurations that are available with
JBoss AS 5 CR1.

Table 13.5 Entity cache configurationsa

Cache configuration name
Supported
data types

Best for Cache mode
Node

locking
Initial state

transfer

optimistic-entity Entities,
collections

Entities,
collections

Synchronous
invalidation

Optimistic No

pessimistic-entity Entities,
collections

Entities,
collections

Synchronous
invalidation

Pessimistic No

local-query Queries Queries Local Optimistic N/A

replicated-query Queries Asynchronous
replication

Optimistic No

a. This table is an adaptation of a table found in the Hibernate Reference found at the end of this chapter.

F

G

366 CHAPTER 13 Clustering JBoss AS services
Hibernate offers a feature that enables optimistic concurrency control by adding a
version attribute to an entity (both in the database and in the Java object). If you use
this feature, the best choice for entity and collection caching is the optimistic-
entity cache configuration. If you don’t, then you should go with the pessimistic-
entity cache configuration.

 Because the database always has a valid copy of an entity, invalidation can be used
with entity caches. Queries, on the other hand, have no representation in the data-
base, so they must be replicated across a cluster to be shared—a costly endeavor. If you
want to enable query caching, you’d probably get better performance using the
local-query cache configuration over the replicated-query cache configuration.

 The timestamps-cache configuration is the best choice for timestamp caching. A
clustered timestamp cache is required if you want to use query caching, even if you
use the nonclustered local-query cache configuration for query caching.

 The optimistic-shared and pessimistic-shared cache configurations can be used for
all the cacheable data types that Hibernate uses. The downside is that because they
handle queries and timestamps, they must use replication, which will be much slower
than configuring different cache configurations for the different regions.
CONFIGURING ENTITIES TO USE THE CACHE

After providing this configuration, you can tell an entity to participate in the cache by
annotating the entity class. To annotate a class, you must use the @org.hibernate.
annotations.Cache annotation. The following code shows a class called Category that
is annotated with the @Cache annotation:

@Entity
@Table(name="CATEGORIES")
@Cache(usage=CacheConcurrencyStrategy.READ_ONLY)
public class Category implements Serializable {
 private Long jpaId;
 private String categoryName;
 // ...
}

Cache configuration name
Supported
data types

Best for Cache mode
Node

locking
Initial state

transfer

timestamps-cache Timestamps Timestamps Asynchronous
replication

Pessimistic Yes

optimistic-shared Entities,
collections,
queries,
timestamps

Synchronous
replication

Optimistic Yes

pessimistic-shared Entities,
collections,
queries,
timestamps

Synchronous
replication

Pessimistic Yes

a. This table is an adaptation of a table found in the Hibernate Reference found at the end of this chapter.

Table 13.5 Entity cache configurationsa (continued)

367Clustering JNDI
Notice that the annotation takes an argument called usage of type @org.hibernate.
annotations.CacheConcurrencyStrategy, which tells Hibernate how to treat enti-
ties of this type in the cache. The options supported by JBoss Cache are shown in
table 13.6.

Note that only the READ_ONLY and TRANSACTIONAL options are available with JBoss
Cache. If you want to use READ_WRITE or NONSTRICT_READ_WRITE, you have to use a dif-
ferent cache implementation. The different cache implementations Hibernate sup-
ports can be found in the Hibernate documentation, which is referenced at the end of
this chapter.

13.5 Clustering JNDI
In Java EE, accessing a server-side component almost always requires a JNDI lookup.
JBoss provides a cluster-aware, high-availability JNDI service (called HA-JNDI) that runs
on top of the existing JNDI infrastructure. In this section, we examine the architecture
and see how the HA-JNDI service works and how to access it.

13.5.1 Understanding the HA-JNDI service

The HA-JNDI service is a cluster-aware naming service that runs on each node of a clus-
ter. The service provides client applications with four main features:

■ Load balancing and failover of naming requests
■ The ability to search the server’s local JNDI server
■ Automatic discovery of naming servers
■ A replicated cache

Figure 13.1 shows you a cluster running with HA-JNDI enabled.
 Notice that each node has its own local JNDI service running. This local JNDI ser-

vice is the standard JNDI service that runs in the default configuration. Each node also

Table 13.6 The available CacheConcurrencyStrategy options you can assign to an entity

CacheConcurrencyStrategy value Description

READ_ONLY Use this option if your data never changes. Once the entity is in the
cache, it isn’t retrieved again unless the cache is manually evicted.

READ_WRITE Use this option to cache data that’s occasionally updated, but where
isolation is necessary to avoid stale data. This strategy ensures read-
committed isolation by maintaining a timestamp for the entity.

NONSTRICT_READ_WRITE Use this option to cache data that’s occasionally updated, but where
some stale data can be tolerated. This mode gives no guarantee of
isolation, but is faster than READ_WRITE.

TRANSACTIONAL Guarantees full transactional isolation up to repeatable read. Use
this option for data that’s mostly read but where it’s critical to pre-
vent stale data if an update does occur.

368 CHAPTER 13 Clustering JBoss AS services
has a HA-JNDI service running that uses JGroups to be aware of the other HA-JNDI ser-
vices running on the other nodes in the cluster.

 The HA-JNDI service provides failover for client-bound objects. This feature is pro-
vided by a replicated cache implemented with JBoss Cache. This cache contains only
objects bound by the client. Any objects the client binds to the HA-JNDI service are
replicated across the cluster. Objects bound into a server’s local JNDI service don’t par-
ticipate in the HA-JNDI service and don’t get replicated or fail over. An EJB application
deployed to a node is bound into the node’s local JNDI server, excluding it from being
replicated and excluding the naming lookups for the bean from failing over. But just
because the JNDI binding doesn’t fail over doesn’t mean the EJB itself isn’t able to fail
over. EJB failover is a property of the dynamic proxy for the EJB and is handled by a
different service.

 The HA-JNDI service running on each node is aware of the node’s local JNDI ser-
vice, so HA-JNDI provides a way for a client to transparently look up an object from any
of the local JNDI services. Figure 13.2 illustrates how this happens.

 Here, node A and node B comprise a heterogeneous cluster. Node B has bound an
EJB into its local JNDI server, but node A doesn’t have the same EJB deployed. If a client
calls node A’s HA-JNDI service to do an EJB lookup, node A’s HA-JNDI doesn’t have the
EJB and so calls node A’s local JNDI service. Node A’s local JNDI service doesn’t have the
EJB either. Subsequently, the HA-JNDI
service sequentially calls each other
node’s HA-JNDI service, which in turn
calls each node’s local JNDI service until
the EJB is found. The searching stops as
soon as a successful lookup has occurred,
so the client can call any node in the clus-
ter to do a lookup on a locally bound
object, even though the node that the
call was made to may not have the object.

 If the cluster is homogenous,
then the lookup always returns from the
first-called node. But if the cluster is

Figure 13.1 For each node in a cluster,
the HA-JNDI services communicate,
replicating object bindings and allowing
for lookups from any node.

Figure 13.2 A lookup on one node’s HA-JNDI and
local JNDI with a lookup miss, then a call to another
node’s HA-JNDI, resulting in a call to the other node’s
local JNDI for a lookup hit

369Clustering JNDI
heterogeneous, there’s a performance trade-off to the transparent lookup because
multiple nodes may have to be queried before the object can be found. And, in the
worst case, if the object doesn’t exist, all the nodes in the partition have to be called
before an exception is thrown. This process can be time consuming, so you should
cache the results of a JNDI query on the client side as much as possible.

 Now that you have a general understanding of the HA-JNDI service architecture,
let’s see how you can enable the service.

13.5.2 Enabling HA-JNDI

The all server configuration comes with HA-JNDI enabled. The microcontainer bean
that defines this service is the HAJNDI bean defined in the server/all/deploy/cluster/
hajndi-jboss-beans.xml file. The HAJNDI bean depends on the cluster defined in the
HAPartition bean, which is defined in the server/all/deploy/cluster/cluster-jboss-
beans.xml file. We talked about the HAPartition bean in chapter 12.

 Table 13.7 lists several properties you may want to configure on the HAJNDI bean in
order to configure the service.

Table 13.7 A summary of the attributes that can be configured for the HA-JNDI service

Attribute Description

bindAddress The network address this service binds to in order to wait for cli-
ents to connect. The variable shown to the left populates the
value of –b passed in on the command line. This is for a multi-
homed machine. Leaving it blank (the default) causes it to listen
on all network interfaces. See chapter 15.

port This is the port clients use to look up a naming-service dynamic
proxy.

rmiPort After the client looks up a dynamic proxy using the port, the
dynamic proxy uses this RMI port to communicate with the JNDI
server to do naming lookups.

backlog Defines how many unhandled client requests are allowed to queue
up on the socket before they start getting Connection Refused
errors. See javadoc for java.net.ServerSocket constructor.

discoveryDisabled Used to disable automatic discovery.

autoDiscoveryBindAddress The network address to bind to for client auto discovery.

autoDiscoveryAddress The multicast address to listen to for automatic discovery.

autoDiscoveryGroup The multicast port to listen to for automatic discovery.

autoDiscoveryTTL The TTL in seconds for an automatic discovery request from the
client. This is similar in concept to TTL in JGroups, which we dis-
cussed in chapter 12.

loadBalancePolicy The load-balancing policy to use inside the dynamic proxy down-
loaded by the client.

370 CHAPTER 13 Clustering JBoss AS services
After starting the all configuration, or configuring your own configuration to start the
HA-JNDI service, you need to know how to access it from a client application. Let’s take
a look.

13.5.3 Accessing HA-JNDI

To access the JNDI server in a single-server environment, you can provide the IP and
port for the JNDI service. Here’s what your jndi.properties file might look like:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=192.168.1.140:1099

And the corresponding code would simply be

Context ctx = new InitialContext();

In a clustered environment, there’s no single server that you access, so you need a way
for the client application to point to or discover nodes in the cluster. Both mecha-
nisms are available in JBoss HA-JNDI.
MANUALLY SPECIFYING NODE IPS

First, you can manually specify multiple nodes within your cluster using the java.
naming.provider.url parameter. In this case, your jndi.properties file would look
like this:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provier.url=192.168.1.140:1100,192.168.1.141:1100,

➥ 192.168.1.148:1100

Notice there are multiple IPs/port pairs specified, and they are comma delimited.
Also notice the ports are all set to 1100, the default HA-JNDI port, rather than 1099,
the default JNDI port. JBoss goes sequentially through this list to try and connect to
the HA-JNDI service.
AUTO DISCOVERING NODES

The other way to connect to the cluster is to use auto discovery, a feature that utilizes
JGroups’ multicasting functionality to have the client automatically discover the nodes
he can connect to. You enable this by specifying the initial factory property without
the provider URL property:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory

If you’d like to change the default multicast settings, you can specify a list of addi-
tional properties. The following jndi.properties file shows the properties you can set,
along with their default values:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
jnp.discoveryGroup=230.0.0.4
jnp.discoveryPort=1102
jnp.disableDiscovery=false
jnp.discoveryTimeout=5000

Auto discovery is easier, but can perform slower.

371Clustering JNDI
ACCESSING HA-JNDI FROM THE SERVER

We’ve explored accessing HA-JNDI from a client, but what if you want to access it from
the server? Creating an initial context on the server (without specifying any properties)
defaults to the local JNDI server. The server doesn’t have the concept of a jndi.properties
file; if you want to access the HA-JNDI service from within your server code, you have to
pass in the JNDI properties programmatically. Take the following code for example:

Hashtable<String, String> properties = new Hashtable<String, String>();
properties.put(Context.INITIAL_CONTEXT_FACTORY,

➥ "org.jnp.interfaces.NamingContextFactory");
properties.put(Context.URL_PKG_PREFIXES, "org.jboss.naming");
properties.put("jnp.partitionName", "DefaultPartition");
InitialContext ctx = new InitialContext(properties);
ctx.bind("MyJndiName","MyJndiValue");

Here, you populate a hash table with key-value pairs representing the properties you
have to pass in to the initial context when you create it. You use static constants on the
Context class for the keys. There’s no provider URL, so automatic discovery is used.
The jnp.partitionName property points to the partition you want to access, making
sure you don’t connect to the wrongly discovered cluster.

13.5.4 Deciding whether to use HA-JNDI

HA-JNDI is ideally used in a homogenous cluster where all the nodes are running
within the same subnet, mainly because of performance. If the cluster is heteroge-
neous, then transparent lookups may have to hop between nodes. When the cluster is
homogenous, transparent lookups are unnecessary because each node’s local JNDI
server is able to serve the objects. The only time the transparent lookups occur is
when an object is nonexistent, in which case every node in the cluster is searched.
This process is bad when the cluster is homogenous because you only need to search
one node to see if the object exists, but the service searches every node in the cluster.
Unfortunately, JBoss doesn’t provide a way to disable the transparent lookups, which is
what you’d want for homogenous clusters.

 If the cluster nodes aren’t on the same subnet then the inter-node latency is usu-
ally high. Replication occurring as a result of client-bound objects is slow, and trans-
parent lookups are slow. The worst case is if the cluster has high inter-node latency
and is heterogeneous. Table 13.8 shows you the four scenarios and describes the per-
formance trade-offs with each.

Table 13.8 A comparison of how performance is impacted by cluster makeup and
 inter-node latency

Homogenous cluster makeup Heterogeneous cluster makeup

Low inter-node latency
(same subnet)

Best case scenario!
Transparent lookups are fast but
unnecessary.
Replication is fast.

Transparent lookups are fast and
necessary.
Replication is fast.

372 CHAPTER 13 Clustering JBoss AS services
If you have a heterogeneous cluster and you have high inter-node latency, you may
consider running JNDI on a single server in your cluster, but this causes you to lose out
on high availability, the main benefit to running the HA-JNDI service. If you run JNDI
on a single server, the only benefit you have to running HA-JNDI is the automatic dis-
covery feature.

 Another scenario where you might consider running the default JNDI service on a
single node of your cluster is when you have to access an external naming or directory
service. By external, we mean the naming or directory service runs outside the server’s
JVM process, such as an LDAP server or a DNS server. Unfortunately, one limitation of
the HA-JNDI service is that you can’t use an external JNDI implementation. If you have
to have an external JNDI implementation such as LDAP, then you can’t use HA-JNDI.

13.6 Summary
In this chapter, you learned about how to apply clustering to different application
components and services including HTTP sessions, session EJBs, entity EJBs, and JNDI.
We started with a discussion of HTTP load balancing and explained how you don’t
need a cluster to load balance HTTP requests. We talked about how to use a native web
server or a hardware load balancer to load balance requests.

 After that, we talked about HTTP session replication. First, you learned where to
configure HTTP session replication. Then we talked about how sessions can be repli-
cated and passivated to a secondary datastore.

 Next, we covered session-bean clustering, talking about load balancing SLSBs and
replicating SFSBs. After that, we covered entity clustering by discussing how to repli-
cate the entity cache, how to hook the cache in to JPA, and how to configure entities to
use the cache.

 Finally, we discussed how to cluster JNDI. You learned how to enable clustered JNDI
and how to access it from the client side using both manually defined IPs and auto
discovery.

 So far, you’ve learned quite a bit about how to configure JBoss to get things to work
functionally. Clustering can help scale an application to help it perform better under
greater loads. Often, scaling an application isn’t enough to get it to perform to the
extent that you want. In the next chapter, we look at ways to improve the performance
of your applications and your application server.

High inter-node latency
(nodes far apart)

Transparent lookups are slow and
unnecessary (but unfortunately
you can’t disable them).
Replication is slow.

Worst case scenario!
Transparent lookups are slow and
necessary.
Replication is slow.

Table 13.8 A comparison of how performance is impacted by cluster makeup and
 inter-node latency (continued)

Homogenous cluster makeup Heterogeneous cluster makeup

373References
13.7 References
Benchmark results for field-level replication —http://wiki.jboss.org/community/docs/DOC-12696
Section 19.2 (The Second Level Cache) of the Hibernate documentation —http://www.hibernate.org/

hib_docs/v3/reference/en/html/
The javadocs for java.net.ServerSocket —http://java.sun.com/j2se/1.5.0/docs/api/java/net/

ServerSocket.html
Apache Tomcat connectors—http://tomcat.apache.org/connectors-doc/
Using mod_jk 1.2.x with JBoss/Tomcat bundle and Apache2—http://wiki.jboss.org/communitiy/

docs/DOC-12525
Using mod_proxy with JBoss/Tomcat bundle and Apache2.2.x—http://wiki.jboss.org/community/

docs/DOC-12529
Using mod_jk 1.2.x with JBoss/Tomcat bundle and IIS 4.x or 5.x—http://wiki.jboss.org/community/

docs/DOC-12526
Hibernate Reference: Using JBoss Cache 2 as a Hibernate Second Level Cache —http://opensource.

atlassian.com/projects/hibernate/secure/attachment/13759/hibernate_reference.pdf
Hibernate: Truly Understanding the Second-Level and Query Caches —http://www.javalobby.org/

java/forums/t48846.html

http://wiki.jboss.org/community/docs/DOC-12696
http://www.hibernate.org/hib_docs/v3/reference/en/html/
http://www.hibernate.org/hib_docs/v3/reference/en/html/
http://java.sun.com/j2se/1.5.0/docs/api/java/net/ServerSocket.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/ServerSocket.html
http://tomcat.apache.org/connectors-doc/
http://wiki.jboss.org/communitiy/docs/DOC-12525
http://wiki.jboss.org/communitiy/docs/DOC-12525
http://wiki.jboss.org/community/docs/DOC-12529
http://wiki.jboss.org/community/docs/DOC-12529
http://wiki.jboss.org/community/docs/DOC-12526
http://wiki.jboss.org/community/docs/DOC-12526
http://opensource.atlassian.com/projects/hibernate/secure/attachment/13759/hibernate_reference.pdf
http://opensource.atlassian.com/projects/hibernate/secure/attachment/13759/hibernate_reference.pdf
http://www.javalobby.org/java/forums/t48846.html
http://www.javalobby.org/java/forums/t48846.html

Tuning the
 JBoss Application Server
When I (Peter) was in high school and got my first car, it didn’t have the dozens of
computers that modern cars have—computers that automatically tune your engine
to get the optimum performance. In those days, the engine was mostly mechanical.
To keep it running at optimum performance, I used a timing strobe to make sure
the spark plugs sparked at the proper instance; made sure the spark gap on the
spark plug was set to the recommended distance; cleaned and adjusted the carbu-
retor; and a whole bunch of other tasks. It wasn’t enough to put gas in the car and
occasionally change the oil to keep a car running efficiently.

This chapter covers
■ Defining performance
■ Developing a performance tuning methodology
■ Tuning the hardware and network
■ Tuning the OS
■ Tuning the JVM
■ Tuning the application server
■ Tuning your application
374

375Defining performance
 Similarly, deploying applications to an application server and starting the server
isn’t sufficient to get the optimal performance from the application server. As with an
older model car, you can pay someone to tune it for you, or you can learn how to tune
it yourself. You’re concerned that your application runs efficiently, that it doesn’t con-
sume more resources than necessary, and that the performance of the system as a
whole is satisfactory to your customers. In this chapter, we tell you many of the things
that you need to know to tune your applications and the application server to meet
those goals.

 We approach tuning from a holistic perspective, looking at all the components
that make up the system and tuning those components that need it the most. For
example, while much of the tuning of an older model car involves the engine and its
components, anyone who knows automotive performance will tell you that the engine
is only the starting point; you also need to be concerned about the transmission, rear
axle, and even the tires. They all contribute to the car’s overall performance.

 In the course of this chapter, we examine everything from low-level details, such as
the size of the CPU cache, to high-level details, such as the prepared statement cache,
and a lot of details in between. In the end, you should have enough information to
tackle tuning the components of your system. With each component finely tuned, you
should get the best performance out of your application and customers happy with
the responsiveness of the system.

 We start performance tuning at the bottom of the software stack—the hardware
and operating system—and work our way up through the JVM, the application server,
and the application. But before we can tell you about performance tuning, we first
need to define what we mean by performance.

14.1 Defining performance
There are several aspects to performance, such as response times, throughput, and the
related topic of service level agreements (SLAs). Another aspect of performance is how
well the system scales to meet an increased workload.

 Response time relates to how quickly the system responds to a user’s request. The
response time can vary widely from one request to another, even if the request is the
same. Therefore, it’s typically better to look at the average response time for a particu-
lar request than to look at individual times. There’s also the difference between the
processing time and the round trip response. The processing time is the amount of time
from when the system initially received the request until the system returns the
response. The round trip response time includes latency, which is the time it takes to
transport the user’s request from the user’s input device to the system and back.
Therefore, the response time is always longer than the processing time and typically
depends on the communications network between the user and the system.

 Throughput relates to the number of requests the system can handle and is
expressed as the number of requests within a given time period. For example, the
throughput requirements for a system might state the system must handle 10,000
requests per hour.

376 CHAPTER 14 Tuning the JBoss Application Server
 An SLA is a contract to provide a certain level of service between a vendor, who’s
hosting or providing an application or system, and the customer using the system. The
level of service defines a required and measurable response time, throughput, or
both. The SLA guarantees that the vendor provides enough resources to process the
customer’s requests in a timely fashion and usually stipulates monetary compensation
if the system doesn’t meet the SLA goals.

 Scaling relates to whether and how additional load can be added to the system. For
example, a particular system might start with 100 users but later must support 1000
users. What must be done to the system to handle the extra users? There are two
aspects to scaling: scaling up (also know as vertical scaling), and scaling out (also known
as horizontal scaling). The term scaling up means adding more resources to an existing
computer to handle the increased load, whereas scaling out means adding more com-
puters to the system to handle the load.

 Consider the aforementioned system with 100 users. Let’s assume that the system
consists of two computers, one for the application server and the other for the data-
base. The computer running the application server has 512MB of RAM, a certain
amount of disk space, and is dual-processor capable but contains only a single proces-
sor. If, by increasing the memory to 2GB and adding a second processor, the system
can handle 1000 users, then you’ve successfully scaled up the system. If you add a sec-
ond or third computer running the application server to handle the 1000 users, then
you’ve scaled out the system.

 Now that you understand what we mean by performance, let’s describe a method-
ology you can use to tune your applications.

14.2 Performance tuning methodology
In this section, we define our tuning philosophy. After defining the philosophy, we
show you how to set up repeatable tests you can use to measure performance and
gauge the results of your tuning efforts.

14.2.1 Holistic performance tuning

Before you do any tuning, you should first have an SLA that defines throughput and/
or response time requirements. Why should you have an SLA first? Because if you
already meet the performance requirements that your customers demand, then you
don’t need to spend time and money fine-tuning your system.

NOTE The SLA is defined from the end user’s point of view and encompasses
the entire system: the network, the operating system, the application
server, the database server, and the application.

It does no good to rewrite a sort algorithm to make it faster if that algorithm has neg-
ligible impact on the end-user experience, even if you can prove through a micro-bench-
mark that the new sort algorithm is 10 times more efficient. Instead, look at every part
of the system and identify the main bottleneck. After identifying the bottleneck, you can
either tune the component causing the bottleneck or attempt to reduce the usage of
that component.

377Performance tuning methodology
If you want to tune the component causing the bottleneck, you typically use one or
more of the methods identified in table 14.1.

 When you locate bottlenecks and tune to eliminate them (or, at least, reduce them
to an acceptable level), then you affect the behavior of the entire system and improve
the end-user experience. Also, you don’t waste your time making improvements that
have little or no impact.

 When we describe tuning in this chapter, we consider tuning at all levels of the
software stack, as follows:

■ Hardware and network
■ OS
■ JVM
■ JBoss AS
■ Your application

Even in the sections dealing with other parts of the stack, the emphasis is on the appli-
cation server and the computer and JVM running it. We don’t discuss tuning the data-
base for two reasons. First, each database behaves differently and is tuned differently.
Second, books have been written on tuning particular databases; we can’t do justice to
the topic in this book. We do look at some database issues as they relate to tuning the
application server and your application.

 Now let’s look at how to set up a repeatable test to aid in performance tuning.

14.2.2 Performance analysis test cycle

The performance analysis test cycle is simple. You complete the following steps:

1 Set up the test environment.
2 Run the test.
3 Analyze the test results.
4 Tune the system.
5 Repeat from step 2.

Let’s look at the details of each of these steps.

Table 14.1 Various methods that you can employ to tune an application

Tuning method Examples

Change configura-
tion parameter

Change an argument on the command line to the JVM.
Change the size of the database connection pool in the data
source configuration file.

Add or change
hardware

Add a second disk controller to the database server to better
parallelize access to the disk.
Add more memory to the computer running the application server.
Replace 100MB network cards with 1GB network cards.

Modify application
or database

Change a key algorithm within the application code.
Add an index to a table in the database.
Deploy a cache to reduce the queries against the database.

378 CHAPTER 14 Tuning the JBoss Application Server
SETTING UP THE TEST ENVIRONMENT

Gather the hardware you require for the test and install the software. For example,
you might have one computer for the database, another for JBoss AS, and a third to
generate the simulated user traffic.

 How many computers you need and the network configuration all depend on the
purpose of the test. For example, if you’re testing scale-out capabilities, use two or
more computers running JBoss AS and, perhaps, another computer running the
Apache HTTP Server to handle static content and perform load balancing between
the application server computers. Also, the test system should be as close to the pro-
duction system as possible because even slight differences—such as CPU speed, disk
access times, or JVM version—can have significant impact on your performance results
and the tuning.

NOTE When testing scale-out capabilities, always take a single application
server instance to its limit first, and then take two application server
instances to their limits, and so on. Only then can you get a clear idea of
the scale-out capabilities of your system; you’ll know how much addi-
tional traffic you can support by adding another application server to
the production configuration.

If your company maintains its own network, you could set up the performance test sys-
tems on that network. Doing so enables you to monitor and run the test remotely; this
type of setup is handy if the test system is in a room in another part of the building.
But having an isolated network where the test computers are connected via a router
that’s neither on the internet nor on a company-wide network is preferred. The only
network traffic generated will be that of your test. Having an isolated network also pre-
vents the embarrassment of having the network administrator appear at your door
asking you why you’re running a denial of service (DoS) attack against the company’s
computers. Ahem. Of course, we wouldn’t know anything about that.
CREATING A TEST SCRIPT

You need a repeatable test script. The script must perform the exact same operations
each time it’s run. If you use a random number generator to vary what the script does,
seed the generator with the same value each test run so that the test is repeatable. If
the test isn’t repeatable, you can’t determine if any changes in the test results are
because of the changes you made or because the script performed different opera-
tions. Ideally, if you take the resulting charts of performance data, such as CPU usage
and queue depths, from several script runs and overlay corresponding charts, the
charts should match exactly.

 The script shouldn’t be too short or too long. If the script is too short, you’ll have
no idea how the software behaves after it runs for a while. For example, a slow mem-
ory leak won’t show up on a short run. If the script is too long, you end up waiting for
test runs to complete. For example, if the test takes 8 hours to run, you can run the
test only once per day. An ideal time is about 20 minutes. With a 20 minute test run,
you can perform the entire performance analysis test cycle in an hour. Once you’re

379Tuning the hardware and network
satisfied with the performance of a 20 minute run, you can then run it for a long time,
such as 24 hours, to gauge the long-term performance.

 Decide what data you want to gather and set up the tools used to gather that data.
You might consider using the Performance Monitor on Windows or the top utility on
Linux and UNIX systems. The tools used to drive the test, such as JMeter, also provide
performance data. The tools you use depend on what you have available, budget, and
personal preference and familiarity. Be aware that some of these tools impact applica-
tion performance. You might consider using tools that adversely impact performance
only to gather data and not to measure performance against a goal.

 Perform several initial runs. Use these runs to verify that the script is repeatable,
that the application results are correct (for example, the database is updated as
expected), and that you have all your tools in place. Don’t perform any tuning between
these runs. When you have three or more runs with the same results, you’re ready to
start the analysis cycle. Use the data from any of these runs as the baseline data.
ANALYSIS CYCLE: RUN, ANALYZE, AND TUNE

Because you’ve already run the test to get a baseline, examine the data gathered by that
test. Based on that data, decide on what change to make to tune the system. This change
can be to any part of the system. For example, you might notice that the database server
was running at an average of 90 percent CPU, leading you to examine the data gathered
on that server and finally causing you to conclude that a table is missing an index on one
of its columns. Adding the index is the suggested tuning change.

 Make only one change. This is important, so we’ll repeat it: make only one change
at a time. If you make more than one change, you’ll never be able to tell which of the
changes caused a change in the test results or if the changes cancelled each other out.
Unless you have prior experience or knowledge to the contrary, never change more
than one thing before running the test again.

 Run the test again. If the performance improves, use this test run as your new base-
line. If the performance worsens, keep the prior baseline.

 Repeat this cycle until you run out of time (for example, the schedule allocated 2
weeks for running performance tests); you can no longer improve the performance of
the system (for example, none of the recent changes have yielded any further
improvements); or you’re satisfied with the performance you have (for example, the
goal was 10,000 requests per hour, and you achieved 3000 requests in 18 minutes).

 Now that you know how to test the performance of your system, let’s show you the
ways that you can tune it, starting from the bottom of the stack—the hardware and
network.

14.3 Tuning the hardware and network
We often see questions on the JBoss forums from people asking, “What are the hard-
ware requirements for JBoss AS?” At one time, I was running the application server
on a laptop with 512MB of RAM and a 1GHz processor. If I had more than a handful
of users, the performance would’ve soon become unacceptable. So, what are the
requirements? It depends on your needs. For example, an application server used to

380 CHAPTER 14 Tuning the JBoss Application Server
serve a department or company of a few dozen people could run on a computer
with a 2GHz processor, 1GB RAM, and the database could run on the same com-
puter. To service thousands of users, you might need several application server
instances, a large and separate database server, and high speed connections between
these components.

 Let’s look at some specific areas that you should consider—the network speed, the
number of CPUs, and whether to use 32-bit or 64-bit CPUs.

14.3.1 Setting network card speed

Most network cards are flexible enough to run on networks of various speeds. For
example, a 1 GB network card can run on a 100MB network. Unfortunately, that capa-
bility comes with a price. Most such network cards or their drivers have an auto-detect,
or auto negotiation, mechanism that determines the speed of the network and adjusts
the card’s speed accordingly. Our tests have shown that setting the network card to
run at the speed of the network, instead of using auto-detect, can boost performance
by as much as 15 percent.

 To set the speed of the network card on Windows, select Network Connections in
the Control Panel, right-click the desired network connection, and choose Properties.
In the resulting Properties dialog box, click the Configure button. The Advanced tab
lists several properties (each card has its own set of properties), one of which defines
the network speed. Select the speed property and choose the desired speed from the
value drop-down box, as illustrated by the example in figure 14.1.

 You can use the mii-tool or ethtool commands (you must be root to run either
command) to set the speed of the network card on most Linux distributions. The dis-
cussion that follows assumes you’re using the mii-tool command.

 You can determine the current setting of your network card and the allowed net-
work speed settings using the –v command line option, as shown in listing 14.1.

Figure 14.1 Use the Advanced
tab on the NIC properties dialog
box to set the speed to
something other than Auto.

381Tuning the hardware and network
$ mii-tool –v
eth0: negotiated 100baseTx-FD, link ok
 product info: vendor 00:50:43, model 2 rev 3
 basic mode: autonegotiation enabled
 basic status: autonegotiation complete, link ok
 capabilities:

➥ 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD
 advertising: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD
 flow-control
 link partner: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD

Based on this output, you can set the card speed to 100 megabits per second as follows:

$ mii-tool –F 100baseTx-FD eth0

You should always set the speed to match that of the network. In this example, the net-
work must be running at 100 megabits per second, full duplex. If the speed of the
card doesn’t match that of the network, you won’t have network connectivity until you
correct the speed.

14.3.2 Choosing the number of CPUs

Having multiple CPUs on the computer is preferred because JBoss AS uses many
threads to run applications. With multiple CPUs, the threads don’t have to wait as long
to get time on a CPU. A two- or four-CPU computer is sufficient. You can use a com-
puter with more CPUs such as 8 or 32, but you then must take processor affinity into
account; we discuss this topic in section 14.4.1.

14.3.3 Choosing 32-bit or 64-bit

Should you use a 32-bit processor or a 64-bit processor and a corresponding JVM?
From a performance viewpoint, there’s little difference in the performance of an
application server running on a 64-bit JVM as compared to a 32-bit JVM. Although
that might sound surprising, consider that the application server, and the computer
on which it runs, is only one part of a fairly large and complex system. Whereas a
batch Java application that performs a lot of in-memory processing benefits signifi-
cantly from 64-bit hardware, an application server spends more time waiting for
other parts of the system, such as user requests or database responses, than it does
processing data.

 For 32-bit operating systems, if you’re running only a single application server, 2
GB of RAM is usually sufficient. This enables you to assign a heap of about 1.4 GB. Even
if you have more RAM, you might not be able to assign a larger heap. On a 32-bit OS,
there’s usually only 4 GB of address space available to each process. The OS typically
reserves 2 GB of space for its own purposes such as file buffers, thread information,
and all the other data necessary for it to run the process. The Java heap ends up shar-
ing the remaining 2 GB with the JVM code and the various OS and language libraries

Listing 14.1 Running the mii-tool command

Indicates card in
auto-detect mode

Lists valid
speeds

382 CHAPTER 14 Tuning the JBoss Application Server
that the JVM uses. Additionally, most JVMs require a contiguous block of memory to
allocate the heap. The practical limit is usually around 1.4 GB but varies depending on
the OS and its version.

 For a 64-bit OS, you need more RAM because the word size is larger, so everything
uses more space. As a rule of thumb, start the computer and notice the total amount
of allocated memory. Add to that the heap size you want and get at least that much
RAM. Usually, 4 GB is plenty. Be aware that large heaps take longer to garbage collect,
possibly causing long pauses in your application.

14.4 Tuning the OS
Books have been written on tuning Windows, Linux, Solaris, and others. In general,
anything that can be done to improve the performance of the OS as a whole benefits
the application server. In this section, we cover a few areas that are beneficial to the
application server and might not be pointed out in other books.

 One obvious tuning measure is to stop all services that aren’t required. All such
services consume memory and processor bandwidth that can, instead, be applied to
the application server. There are web sites that list the various services on Windows or
daemons running on UNIX and Linux and describe the services, indicating which are
necessary and which can be turned off.

 While monitoring a system, ensure that the average CPU usage doesn’t go over 80 per-
cent. A range of 50 to 80 percent is usually ideal. If you push the system more than that,
performance typically drops off.

 If the computer running the application server contains only one or two proces-
sors, then the aforementioned advice is all that should concern you. If it has four or
more processors, then you should be concerned with processor affinity.

14.4.1 Understanding processor affinity

Most OSs that support multiple processors provide a mechanism to limit the proces-
sors on which a given process runs. Such a capability is known as processor affinity. For
example, on a multiprocessor computer running Windows, the context menu for pro-
cesses in Task Manager contains a Set Affinity option, which displays a Processor Affin-
ity dialog box, as shown in figure 14.2. Using this dialog box, you can select which
processors a particular process uses.

 For a multiprocessor computer run-
ning Linux, you use the taskset utility to
set processor affinity. For example, if the
application server is running as process
number 9999 on an 8-CPU computer, you
can declare that the application server
use only four processors using the follow-
ing command:

taskset –p 0x0f 9999 Figure 14.2 Setting processor affinity on Windows

383Tuning the OS
If your computer has multiple processors, why would you want to limit the processors
for a given process? To answer this question, you must first understand how a processor
cache works. While the processor is executing the thread of a process, the data and code
used by that thread are stored within a cache within the processor. When the thread is
interrupted, because the thread either blocked while waiting on some event like I/O or
used up its time allotment, another thread runs and starts to overwrite some of that
cached code and data. If the cache is large enough and the thread that was running
there gets back onto the same processor, then there’s a good chance that some of the
code or data is still cached. If the thread is assigned to a different processor, then the
thread must once again try to fill the cache. And accessing cached data is many times
faster than accessing data from RAM.

 How does this apply to Java applications in general or application servers in partic-
ular? A Java application usually performs data access to recently created objects in the
heap. Because active data is kept in the processor cache, if the thread continues to be
assigned to the same processor, the cache will likely contain the data for the objects of
interest. If the thread is assigned to a different processor, the thread must take the
time to reload data from RAM.
SETTING PROCESSOR AFFINITY

The next question is, “What is the appropriate processor affinity for an application
server?” Testing has shown that anywhere from two to four processors should be
assigned to the application server for best performance. The exact number depends
on the application(s) deployed to the application server. Usually, an application that
has a high degree of dependency on common data performs better on two processors,
whereas a more independent application performs better on four. Test your applica-
tion on two, three, and four processors and select the processor affinity that works
best for you.

NOTE Please don’t misconstrue the advice on processor affinity as meaning
that Java applications don’t scale. Many Java applications do scale well
up to 2, 64, or even more processors. Such applications tend to run
independent threads. An application server must manage many shared
objects that are accessed by all threads. It doesn’t have threads dedi-
cated to a single task (most threads handle user requests, each of which
is vastly different) and has difficulty scaling higher than four processors.

You use processor affinity to run multiple application server instances on a single com-
puter that has many processors. For example, if your application runs best using two
processors and the computer has eight processors, you can run four application server
instances, setting processor affinity so that each instance runs on its own pair of pro-
cessors. In such a case, use a minimum of one network card for every two application
server instances. Additionally, take the combined heap size into account when config-
uring RAM on that computer. In the example, if each application server uses a 1.4 GB
heap, 8 GB of RAM is sufficient.

384 CHAPTER 14 Tuning the JBoss Application Server
NOTE You might wonder how a multicore processor plays into processor affinity
assignments. Our testing has shown that Java EE application servers scale
well up to four physical processors, whether they’re single core or dual
core. If you have dual-core processors, you can scale an application server
up to eight logical processors (four dual-core physical processors). When
you see the term processor in the text, realize that we’re talking about a
physical processor.

You can set the processor affinity for the application server in a variety of ways, most of
them difficult. The Processor Affinity dialog box on Windows enables you to set the
affinity; but, as soon as you shut down the application server, you lose the setting and
have to set it again. Ideally, you want a solution that automatically sets the affinity each
time the application server is run.

 If you have a computer with eight or more processors, the computer manufacturer
or the OS vendor usually has a tool that can be used to manage processor affinity. For
example, the Microsoft Windows 2000 Datacenter Server software, which runs on
eight or more processors, provides the Process Manager tool, which remembers affin-
ity settings. Unfortunately, many such tools are based on the process name, meaning
that you can set only a single affinity setting for all your Java applications because they
all run under the same process name. Many of the more recent tools have remedied
this situation and can key off of portions of the command line. Such a capability can
enable you to, for example, specify different affinity settings for multiple application
server instances on the same computer. For JBoss AS, the command line key could be
the name of the server configuration. Check with your OS vendor or computer manu-
facturer for details regarding tools that they have in this area. And keep in mind the
difficulty of assigning affinity based on process name alone.

 Finally, you could use a JVM that supports processor affinity, such as the Unisys JVM.
With it, you can supply command line arguments to assign the desired processor affinity.

14.5 Tuning the JVM
Sun Microsystems and other JVM vendors are constantly improving the performance
of their JVMs; therefore, you should prefer a later JVM over an earlier one. For exam-
ple, version 6 of the Sun HotSpot JVM has significant performance improvements over
the 5.0 JVM, which is significantly better than the 1.4 JVM.

 There are two HotSpot JVMs, designated as the server and client virtual machines,
which can be invoked using the –client and –server command line arguments. The
differences between the two are mostly in how they handle compiling Java bytecode
into native machine code and how they manage the heap. The client virtual machine
is intended for short-running programs, and the server virtual machine is intended
for longer-unning programs. For example, use the client virtual machine to run Ant,
and the server virtual machine to run JBoss AS. In general, you should prefer the
server virtual machine for running JBoss AS but examine the performance under both
virtual machines. Be aware that a 5 or 10 minute performance test isn’t adequate to
judge between them. Instead, run the test for an hour or more before deciding.

385Tuning the JVM
TIP The Java Runtime Environment (JRE) for Windows ships with only the
client virtual machine. If you want to use the server virtual machine,
download and install the JDK.

Edit the JAVA_OPTS setting in the bin/run.bat (on Windows) or bin/run.conf (on
Linux) file to set the desired virtual machine. By default, both scripts set the server vir-
tual machine. An example setting in run.bat is as follows (note that the –server
option must be the first option on the command line):

set JAVA_OPTS=-server %JAVA_OPTS% ...

The sections that follow concentrate on the HotSpot JVM and command line argu-
ments used to tune that JVM. The arguments apply equally to the client and server vir-
tual machines. Many JVM vendors (such as Apple, HP, and Unisys) license the HotSpot
source code from Sun and base their JVMs on HotSpot, so the following recommenda-
tions should apply to those JVMs as well.

14.5.1 Understanding the Java heap

The JVM allocates Java objects in an area of memory known as the Java heap. You must
understand how the JVM allocates objects and how it frees up heap space used by
objects that are no longer in use (also known as garbage collection) to understand how
to improve the performance of heap management. The details that follow pertain to
the heap as maintained by the HotSpot Virtual Machine; other virtual machines might
employ alternative heap mechanisms.

 As a Java application allocates objects, the virtual machine places those objects in a
heap allocated by the virtual machine. When the application no longer needs the
object and removes all references to that object, that object becomes unreachable. A
garbage collection typically occurs when the virtual machine runs out of room to allo-
cate new objects.

 Most objects allocated by an application have a short lifespan and are said to die
young. In the HotSpot Virtual Machine, the heap is divided into the young generation,
where new objects are placed, and a tenured generation, where objects that have sur-
vived several garbage collections are placed. Each generation is collected individually,
and each has its own collection algorithms.

 A simplified representation of the heap address space is shown in Figure 14.3. The
young generation consists of the eden space, where all new objects are created, and two
survivor spaces known as the to space and the
from space. The tenured generation is also
referred to as the old generation. The permanent
space holds class objects, which include
instances of the java.lang.Class class and
method instances.

 Table 14.2 describes the various command
line arguments that can be used to set the
heap sizes. The Notes column provides some

tenured generation young
generation

survivor
spaces

permanent
generation

eden
space

Figure 14.3 The Java heap is a generational
heap with objects of different ages stored in
different generations.

386 CHAPTER 14 Tuning the JBoss Application Server
preliminary or high-level recommendations on setting some arguments. In addition,
more detailed recommendations appear later in this section.

Table 14.2 JVM heap sizing arguments

Argument Description Notes

-Xms<size>a Sets the minimum heap size. In production, set the min and
max heap sizes to the same
value.

-Xmx<size> Sets the maximum heap size.

-XX:NewSize=<size> Sets the minimum young generation size. In production, set the min and
max young generation sizes to
the same value.

-XX:MaxNewSize=<size> Sets the maximum young generation size.

-XX:NewRatio=<number> Sets the ratio of the size of the young
generation as compared to the tenured
generation. For example, a value of 2
means the tenured generation will be
twice the size of the young generation.

Use either the NewSize/
MaxNewSize arguments or
the NewRatio argument.
Don’t use both.

-XX:SurvivorRatio=
<number>b

Sets the ratio of the size of the eden
space compared to one of the survivor
spaces. For example, a survivor ratio of 8
indicates that the eden space is 8 times
as large as either survivor space.

Vary the ratio based on young
generation size. A ratio of 8 is
good for small young genera-
tions (for example, 10MB),
and 32 for larger young gener-
ations (for example, 100MB).

-XX:+UseTLAB Provides each thread in the application
with its own allocation area (thread-local
allocation block, or TLAB) in the eden
space. Note that this is a Boolean option;
the plus (+) turns it on. You can use a
minus (-) to turn it off: -XX:-UseTLAB.

Mainly benefits multiproces-
sor systems.

-XX:TLABSize=<size> The size of each TLAB. Make sure the young genera-
tion is large enough to hold all
the TLABs for each thread in
the application. You should try
64K, 128K, and 256K.

-XX:MaxTenuringThreshold=
<number>

Indicates the number of minor collections
that an object must survive before being
automatically placed into the tenured
generation.

Usually, you should use a
value of 32.

-XX:MaxPermSize=<size> Sets the size of the permanent
generation.

Don’t set this unless you
run out of space (see sec-
tion 14.5.4).

a. The <size> is a floating point number that indicates the number of bytes. It can be suffixed with the letters K, M, or G to
 represent kilobytes, megabytes, and gigabytes, respectively.

b. The <number> is a floating point number.

387Tuning the JVM
NOTE You might wonder why we didn’t provide the default values for the heap
sizing arguments. The defaults vary depending on the OS, the number of
processors, the amount of memory, the specific version of the JVM, and
even what other command line arguments you have. The defaults are suf-
ficient to run the application server; but, if you want high performance,
set these arguments to the desired values and don’t let them default.

We recommend you set the minimum size and maximum size of the heap to the same
value. If the values are different, the JVM takes away time from processing the applica-
tion to determine if it should adjust the sizes after garbage collection. Hence the rec-
ommendation for production computers. For the same reason, we also recommend
that you set the minimum and maximum young generation size to the same value. In
addition, we recommend that the young generation size be one-third to one-quarter
the size of the heap.

 If you’re running on a development machine, you may use different sizes. For
example, by default, the run scripts set the application server heap to 512MB maxi-
mum and 128MB minimum. When you run the application server on your PC, you
won’t want it to take the entire 512MB unless it needs it because you’ll probably be
doing other work on the PC at the same time, such as development using an IDE.

 To set these values for JBoss AS, either set the JAVA_OPTS environment variable or
change the JAVA_OPTS line in the run script files. As an example, changing the
JAVA_OPTS line in the run.bat script to the following value sets the heap to 1200MB,
the young generation to 400MB, and the survivor ratio to one-thirtysecond the size of
the eden space. In addition, each thread gets its own allocation block or 64K.

set JAVA_OPTS=%JAVA_OPTS% -Xms1200m –Xmx1200m –XX:NewSize=400M

➥ –XX:MaxNewSize=400M –XX:SurvivorRatio=32

➥ –XX:+UseTLAB –XX:TLABSize=64K

You might ask what the recommended values are for each of the heap settings. This
example contains some initial heap settings that we’ve found to work well with a vari-
ety of applications deployed to an application server. Later, after we discuss garbage
collection, we provide you with some tips on how to fine-tune the settings for opti-
mum performance with your application.

14.5.2 Understanding garbage collection

There are two categories of garbage collection: minor and major. A minor collection
cleans out the young generation only, whereas a major, or full, collection cleans out
the tenured generation and the young generation.

 When the young generation is collected, all objects still in use are moved to the
survivor space designated as the to space. These objects are said to be alive, and objects
no longer in use are dead. After the collection, the eden space and survivor space desig-
nated as the from space are empty. If the to space fills up during the collection, any
excess surviving objects are placed in the tenured generation. Additionally, any
objects that have survived several minor collections are also placed into the tenured
generation. Once the collection is complete, the eden space and from space are

388 CHAPTER 14 Tuning the JBoss Application Server
empty, and within the young generation only, the to space contains in-use objects.
Also, at this time, the from space and to space change designations because, after the
collection, the to space is always empty.

 Before the minor collection is performed, the JVM looks at the tenured generation
and determines if there’s ample space to hold any objects from the young generation
that overflow into the tenured generation; if not, it performs a collection on the ten-
ured generation first. This process is known as a full collection. When the tenured
generation is collected, all space occupied by unreachable objects is made available
again. In most cases, the tenured generation is also compacted, moving all surviving
objects to one end of the tenured generation space.
UNDERSTANDING THE COLLECTOR TYPES

There are two basic types of collectors—serial and concurrent—which we compare
and contrast in table 14.3. The Argument column lists the command line argument
used to turn this collector on. If you want the young generation to be collected using
multiple threads, also set the command line argument specified in the Parallel Collec-
tion column. Don’t use a parallel collector on a system with only one processor; the
garbage collection performance isn’t as good as when using a single collector thread.
The tenured generation is always collected with a single collector thread; there’s no
parallel collector for that generation.

 Starting with the 5.0 release, the JVM turns on UseParallelGC automatically for the
serial collector if the computer contains at least two processors and at least 1 GB of
main memory. By default, the JVM uses one collector thread for every processor on
the computer. You can adjust the number of threads using the –XX:Parallel-
GCThreads=<number> argument. Don’t set this value to more than the number of pro-
cessors on the computer. Also, you can turn off the parallel collector by using the
argument –XX:–UseParallelGC, in which case only a single thread is used to collect
the young generation.

Table 14.3 The basic collector types in the JVM and the arguments used to select them

Collector
type

Argument Parallel collection Description

Serial <none, the default> -XX:+UseParallelGC Pauses the Java application until
the collection is finished. If the par-
allel collection argument is set,
then this collector is often referred
to as the throughput collector.

Concurrent -XX:+UseConcMarkSweepGC -XX:+UseParNewGC Performs most of the collection
while the Java application contin-
ues to run. The collection is per-
formed in phases; only two short
phases require the application to
pause. This collector is often
referred to as the mostly concur-
rent collector.

389Tuning the JVM
NOTE The JVM contains a variety of collectors with names such as the Concur-
rent Mark Sweep (CMS) collector and the Throughput Collector; each
collector performs its task in a certain manner. For example, the parallel
collector for CMS is different from the parallel collector used by the
Throughput Collector. For our discussion, we maintain a higher-level
viewpoint and consider only the basic functionality such as stop-the-world
collection vs. concurrent collection and using multiple threads vs. using a
single thread to do the collection.

The concurrent collector attempts to reduce the noticeable pauses in a Java applica-
tion when the serial collector is used. The concurrent collector is a better choice if
your application has strict SLA requirements, but the concurrent collector sacrifices
throughput to perform the collection in this manner. For example, on a two processor
system, one of the processors will be occupied with running the concurrent collector
thread, leaving only a single processor to handle new requests; this effectively reduces
throughput by 50 percent during a garbage collection. In addition, the concurrent col-
lector takes a longer elapsed time to perform the collection than the serial collector.

 Setting the concurrent collector also changes other heap settings—for example,
making the survivor spaces small (64KB) and setting the tenuring threshold to 0. Any
objects that survive a young generation garbage collection are promoted to the ten-
ured generation, placing more strain on the concurrent collector because it has to
collect more often. You might benefit from specifically setting the survivor ratio and
the tenuring threshold to prevent this behavior. These settings must come after the
UseConcMarkSweepGC argument.

 Finally, you must be careful in setting heap sizes for the concurrent collector
because, if the heap runs out of room during a concurrent collection, a costly full
serial collection is performed.

 Which collector should you use for your application? That depends on your appli-
cation and your performance requirements. Test your application with various collec-
tion settings and use the most appropriate one. To do that, you need to know how to
gather and interpret garbage collection data. Let’s look at that next.

14.5.3 Gathering garbage collection data

Table 14.4 presents the various JVM arguments that can be used to gather garbage col-
lection data.

Table 14.4 JVM arguments for gathering garbage collection data

Argument Description Notes

-verbose:gc Generates basic garbage collection
statistics: heap size before and after,
and time spent in collection.

Doesn’t show any statistics
for the concurrent collector.

–XX:+PrintGCDetails Adds data about the young genera-
tion size to that provided by
verbose:gc.

Shows concurrent collector
data.

390 CHAPTER 14 Tuning the JBoss Application Server
The figures 14.4 through 14.7 show example output for the various collection options.
Additionally, you can supply multiple statistics arguments on the command line, in
which case the various outputs are all mixed together in time order.

The verbose:gc and PrintGCDetails outputs (figures 14.4 and 14.5) are fairly sim-
ple. The PrintHeapAtGC output, figure 14.6, is overwhelming at first glance, but the
data is straightforward once you understand it. For each garbage collection, you see
data from before the collection took place (the top half of the text in figure 14.6) and
data from after the collection (the bottom half of the text in figure 14. 6).

-XX:+PrintHeapAtGC Generates detailed garbage collec-
tion statistics: sizes and percent
usage of each heap space, along
with heap memory addresses, before
and after each collection.

Provides details on the vari-
ous phases of a concurrent
collection.

–XX:+PrintGCTimestamp Prints the seconds that have elapsed
since the start of the application.

Use in conjunction with the
other print options.

-Xloggc:<filename> Garbage collection statistics are
placed into the file indicated by
<filename>.

If not specified, the collection
statistics are sent to standard
out.

Table 14.4 JVM arguments for gathering garbage collection data (continued)

Argument Description Notes

[GC 134841K->53479K(296960K), 0.0743071 secs]
[GC 135399K->55534K(296960K), 0.0906430 secs]
[GC 137454K->56650K(296960K), 0.0767066 secs]
[Full GC 126196K->56872K(296960K), 0.6024574 secs]

The time
it took

Total heap
size

Heap in use
after collection

Heap in use
before collection

Minor
collections

Major
collection

Figure 14.4 The output for
–verbose:gc identifies if
the garbage collection is a minor
one or a full one. It also provides
the amount of heap space in use
before and after the collection,
the heap size, and the time spent
in collection.

Minor collection

Major collection

Space in use
before collection

Space in use
after collection

Total size of
this space

Time spent
collecting this space

Young
generation

Tenured
generation

H
e
a
p

[GC [DefNew: 17131K-> 1606K(18432K), 0.0082055 secs]
44904K->29379K(63488K), 0.0083625 secs]

[GC [DefNew: 17990K->17990K(18432K), 0.0000839 secs]
[Tenured: 27772K-> 3759K(45056K), 0.0454394 secs]

45763K-> 3759K(63488K), 0.0459597 secs]

[GC [DefNew: 17131K-> 1606K(18432K), 0.0082055 secs]
44904K->29379K(63488K), 0.0083625 secs]

[GC [DefNew: 17990K->17990K(18432K), 0.0000839 secs]
[Tenured: 27772K-> 3759K(45056K), 0.0454394 secs]

45763K-> 3759K(63488K), 0.0459597 secs]

Figure 14.5 The output for PrintGCDetails expands on the verbose:gc
output by providing separate data for each generation in the heap.

391Tuning the JVM
Both halves provide the same data, so figure 14.7 shows only the before data.

The hex data at the end of each line provides the memory addresses for the specific
generation or space: the start of memory address B, the end of memory address D,
and the current allocation address C. For each generation E, you’re told the total
size of the generation and the amount of memory used. For each space F, you’re told
the total size of the space and the percentage of that space in use.

 The various garbage collection data arguments provide a wealth of information
regarding garbage collection. The main problem with the data is its volume. It’s not
unusual to look at thousands of lines of garbage collection data from a single applica-
tion run. Additionally, it’s next to impossible to see trends amid all this textual data.
Let’s look at how to transform this data into a format that’s easier to interpret and ana-
lyze in order to tune the application.
EXTRACTING GARBAGE COLLECTION DATA

The first thing to do is extract the data of interest and convert it into a more usable
form. The ideal form is one you can load into a spreadsheet or other analysis tools for

{Heap before GC invocations=422:
Heap
def new generation total 18432K, used 17639K [0x6eb40000, 0x6ff40000, 0x6ff40000)
eden space 16384K, 100% used [0x6eb40000, 0x6fb40000, 0x6fb40000)
from space 2048K, 61% used [0x6fd40000, 0x6fe79df8, 0x6ff40000)
to space 2048K, 0% used [0x6fb40000, 0x6fb40000, 0x6fd40000)

tenured generation total 45056K, used 6403K [0x6ff40000, 0x72b40000, 0x72b40000)
the space 45056K, 14% used [0x6ff40000, 0x70580f78, 0x70581000, 0x72b40000)

compacting perm gen total 8192K, used 1597K [0x72b40000, 0x73340000, 0x76b40000)
the space 8192K, 19% used [0x72b40000, 0x72ccf598, 0x72ccf600, 0x73340000)

Heap after GC invocations=423:
Heap
def new generation total 18432K, used 1197K [0x6eb40000, 0x6ff40000, 0x6ff40000)
eden space 16384K, 0% used [0x6eb40000, 0x6eb40000, 0x6fb40000)
from space 2048K, 58% used [0x6fb40000, 0x6fc6b4e8, 0x6fd40000)
to space 2048K, 0% used [0x6fd40000, 0x6fd40000, 0x6ff40000)

tenured generation total 45056K, used 6416K [0x6ff40000, 0x72b40000, 0x72b40000)
the space 45056K, 14% used [0x6ff40000, 0x70584190, 0x70584200, 0x72b40000)

compacting perm gen total 8192K, used 1597K [0x72b40000, 0x73340000, 0x76b40000)
the space 8192K, 19% used [0x72b40000, 0x72ccf598, 0x72ccf600, 0x73340000)

}

Figure 14.6 The output for PrintHeapAtGC provides the most data about the heap sizes
both before and after a collection.

{Heap before GC invocations=422:
Heap
def new generation total 18432K, used 17639K [0x6eb40000, 0x6ff40000, 0x6ff40000)
eden space 16384K, 100% used [0x6eb40000, 0x6fb40000, 0x6fb40000)
from space 2048K, 61% used [0x6fd40000, 0x6fe79df8, 0x6ff40000)
to space 2048K, 0% used [0x6fb40000, 0x6fb40000, 0x6fd40000)

tenured generation total 45056K, used 6403K [0x6ff40000, 0x72b40000, 0x72b40000)
the space 45056K, 14% used [0x6ff40000, 0x70580f78, 0x70581000, 0x72b40000)

compacting perm gen total 8192K, used 1597K [0x72b40000, 0x73340000, 0x76b40000)
the space 8192K, 19% used [0x72b40000, 0x72ccf598, 0x72ccf600, 0x73340000)

34

5F

E B C D

Figure 14.7 The output for PrintHeapAtGC includes the usage information for each heap
generation and for each space within the generations. In addition, it provides the memory
addresses of the start and end of each space and the address of the current allocation pointer.

392 CHAPTER 14 Tuning the JBoss Application Server
further processing. Perhaps the easiest format is a comma-separated value (CSV) file.
You can do this in several different ways such as using a scripting language, like Perl,
that can easily parse such data. A simple Java program with a regular expression can
do the same. Listing 14.2 is a Java program that converts -verbose:gc output into a
CSV file. The nice thing about using regular expressions is that the program can gen-
erate the CSV file even if the -verbose:gc output is interspersed with the logging out-
put generated by the application server.

import java.io.*;
import java.util.regex.*;
public class Analyzer {
 public static void main(String[] args) throws Exception {
 InputStream fin = new FileInputStream(args[0]);
 int iSize = fin.available();
 byte mvIn[] = new byte[iSize];
 fin.read(mvIn, 0, iSize);
 fin.close();
 String strText = new String(mvIn);
 PrintStream fout = new PrintStream
 (new FileOutputStream(args[0] + ".csv"));
 fout.println("Before,After,Seconds");
 Pattern p = Pattern.compile
("\\[(?:Full |)GC (\\d*)K->(\\d*)K\\(\\d*K\\), ([\\d.]*

➥) secs\\]");
 Matcher m = p.matcher(strText);
 while (m.find())
 fout.println(m.group(1) + "," + m.group(2) + "," + m

➥ .group(3));
 fout.close();
 }
}

The code reads the contents of the file containing the -verbose:gc output and places
the contents into a string, strText B. It creates a new file to hold the comma-sepa-
rated data and places titles in the headers of the three columns C. It declares a regu-
lar expression pattern used to match the –verbose:gc output and extract the data of
interest D. Then, it iterates through the data of interest, writing the extracted data to
the output file E. Finally, it closes the output file F.

 For example, assume that –verbose:gc output is captured in a file named
gcout.txt. The following command generates a CSV file named gcout.txt.csv:

java Analyzer gcout.txt

The resulting file contains data similar to the following:

60176,56377,0.0050069
60473,56675,0.0049446
60771,13067,0.1216777

The program can be easily modified to parse the output for the other garbage collection
data options. Those variations are available as part of the source code for the book.

Listing 14.2 Application to convert verbose:gc output to CSV

B

C

D

E

F

393Tuning the JVM
 The data gathered from the -verbose:gc output is the heap space in use before
the collection, the heap space in use after the collection, and the time it took to do
the collection. If you follow the recommendation of setting the min and max heap
size to the same value, the total heap size value in the -verbose:gc output doesn’t
change, and the program doesn’t gather it.
PLOTTING GARBAGE COLLECTION DATA

The best way to view this data is to graph it. You can do so using your favorite spread-
sheet application or a statistical analysis tool. Such applications typically accept CSV
data, and once loaded, that data can be plotted in a graph. The only tricky part is that
the scale of the garbage collection’s elapsed time is different from the two heap-in-use
values. You can compensate for this by either using a different scale for the elapsed
time or first converting the elapsed time values by multiplying by a large value such
as 10,000. Table 14.5 provides instructions for graphing the data in two major spread-
sheet applications. Refer to the documentation for the spreadsheet for more detailed
instructions on how to create charts.

Figure 14.8 contains a typical graph created using Excel. The X-axis represents individ-
ual garbage collection instances, and the Y-axis either the heap size (in kilobytes) or the
time in some factor of milliseconds. One vertical line on the graph contains the three
data points for a single garbage collection. Let’s look at the vertical line labeled B. The

Table 14.5 Graphing garbage collection data

Application Graphing Option Steps

Microsoft Excel XY (Scatter) 1 Open the CSV file.
2 Select the first column only.
3 Click Insert. On the subsequent drop-down menu, select Chart to dis-

play the Chart Wizard.
4 Choose XY (Scatter). Click Next.
5 In Step 2 of the Chart Wizard, click the Series tab. Then, click Add

under the Series list box. Type the text After in Name field, and in the
Y Values field, select the data in the second column.

6 Repeat the previous step for the third column, using Time as the
name. Click Next.

7 On Step 3, fill out the fields as desired and click Next.
8 On Step 4, select the option to place the chart on a new sheet and

click Finish. The chart is displayed on a new sheet.

Note that you can edit the chart.

OpenOffice.org Calc Chart type: lines
Variant: normal

1 Open the CSV file.
2 Select all three columns (you might want to adjust the time spent col-

umn first; see previous paragraph).
3 In the Insert menu, select Chart, and the AutoFormat Chart dialog

box appears.
4 Select the option to place the chart on a new sheet and click Next.
5 Choose the Line chart with the Points Only variation. Click Next.
6 Add appropriate legends and titles and click Create.

Note that you can edit the chart.

394 CHAPTER 14 Tuning the JBoss Application Server
topmost data point (inside the upper circle) represents the heap size before the garbage
collection—approximately 115MB. The middle data point (inside the middle circle)
represents the heap size after the garbage collection—approximately 81MB. The bot-
tom data point (inside the lower circle) represents the amount of time spent in garbage
collection—usually around 10 or 20 milliseconds, which is negligible.

 The data points for the heap size before garbage collection, as well as the ones for
after, tend to form a line with a positive slope, indicating that the tenured generation
is slowly filling up with objects. The first line B identifies the data points correspond-
ing with a single garbage collection, where the heap was at around 115MB before the
collection, 81MB after the collection, and the time spent was negligible.

 Eventually, a full garbage collection occurs C. You can easily spot a full collection
by noting that the data point for one collection (the middle circle) drops dramatically
from the prior data point (the uppermost circle). In addition, the data point for the
time spent (lower circle) is located at a higher point in the chart, in this case repre-
senting a garbage collection time of about 0.6 seconds.

 Some additional data of interest are the number of garbage collections and the total
amount of time spent in garbage collection. You get the latter by totaling the time spent
column. If you have a repeatable performance test, you can easily determine the effect
of your tuning attempts by comparing these values from one run to the next.

B C

Figure 14.8 This plot of the verbose:gc data shows how heap usage increases as the
application runs; when a major collection runs (#2), the heap usage drops. The upper lines are
the heap usage before collection, the middle lines the heap usage after the collection, and the
line hugging the X-axis the time spent in each collection.

395Tuning the JVM
ANALYZING GARBAGE COLLECTION DATA

Now that the data is plotted, what should you do with it? First, you need a goal. Ideally,
you want to see the following:

■ No full collections —Full collections are expensive, as you can easily see by how
much higher the dots that represent time appear during such a collection com-
pared to the other collections.

■ As few collections as possible —Each collection takes time. If you can cut the num-
ber of collections in half, you reduce the total amount of time running the col-
lections by about half.

Fortunately, these goals are complementary. To reach these goals, adjust the heap
sizes until you see a graph that validates that both have been achieved. A general rec-
ommendation for setting the young generation is about one-third to one-quarter the
size of the heap. Figure 14.9 shows an ideal plot of garbage collection statistics.

 Notice that, after 20 collections, the application reaches a steady state, as indicated
by the nearly horizontal lines suggested by the Before and After data points. During
steady state, 450MB of the heap is in use when a collection occurs, and about 200MB of
space is used after the collection. Each collection is a minor collection. Heap usage
remains fairly constant through the 70 collections charted. This graph is as ideal as
you can get. You’d expect that if the application continued to run for several hours, or
perhaps even days, that there wouldn’t be a full collection.

Figure 14.9 Desired garbage collection graph showing that the heap sizes before and after
a collection have reached a steady state, as indicated by the nearly horizontal lines

396 CHAPTER 14 Tuning the JBoss Application Server
If you see an article or paper that claims that some other technology per-
forms better than Java EE, ask to see the Java command line used. If the
young generation size hasn’t been set, then the veracity of the claim is
in doubt.

You might be wondering how you go about finding the ideal balance of heap size set-
tings. Let’s discuss some recommendations for setting heap sizes and look at a process
for setting and adjusting the heap sizes to the ideal values for your application.

14.5.4 Choosing heap settings

Ideally, you want to allocate as much heap space to the application server as it needs but
no more than that. Never set the heap to more than the available RAM on your com-
puter—taking into account the memory used by other processes. For example, if you
have 2GB of RAM and the OS and services take up 500MB, 1.5GB is the recommended
maximum heap size. Additionally, 32-bit JVMs are limited on the amount of heap that
can be allocated because 32-bit applications have only 2GB of data space available, some
of which is occupied by system libraries. Even setting the /3GB boot option for Windows,
or similar options for UNIX/Linux, doesn’t enable you to specify a larger heap because
most JVMs require contiguous memory when allocating the heap.

 Although you can specify a much larger heap when using a 64-bit JVM, think twice
before doing so. Allocating 20GB of heap space might seem like a good idea, but you
might change your mind the first time you hit a full collection and find that the pro-
gram halts for 10 or 20 minutes while the garbage collector runs. If your application
requires a heap larger than 1.4GB, then you’ll have to use a 64-bit JVM and set the
heap to a size large enough for your application.

 Where do you start? And how do you get to heap size nirvana? First, let’s assume
that your computer has 2GB of RAM and explore what it takes to determine the proper
heap settings. If you have less memory, adjust the following numbers accordingly or
install more memory (the latter being preferred).

 Initially, try the largest heap that the JVM allows (around 1.4GB) with a young gen-
eration of 200MB. Gather the garbage collection data and plot it.

 If the plot shows a steady state like figure 14.9, decrease the young generation size
and repeat the test. Do this until you start to see major collections or that the steady
state line has too much of a positive slope. When that happens, revert to the immedi-
ately prior setting.

 If the plot shows major collections, slowly increase the young generation size until
either you hit 500MB (one-third of the approximately 1.4GB heap, a recommended
young generation-to-heap ratio) or the plot shows steady state.

 Either way, once you have the young generation sized, set the heap to three times
the young generation. Retest. If you lose steady state, slowly increase the heap until
you have it again. The heap size is usually about three to four times the size of the
young generation.

 One final area to investigate is the size of the survivor spaces. The PrintHeapAtGC
argument provides data for survivor space usage. You want to see the survivor space

WARNING

397Tuning the JVM
being anywhere from 20 to 90 percent occupied—an acceptable range. If that’s what
you’re seeing, leave it alone. If you’re seeing consistent low usage (for example,
between 5 and 50 percent) or consistent high usage (for example, 90 to 99 percent),
then adjust the survivor ratio until the range is acceptable. Don’t forget: increasing
the SurvivorRatio decreases the size of the survivor space and vice versa.

14.5.5 Resolving out of memory exceptions

You could get an out of memory exception for several different reasons. Your applica-
tion might have a memory leak, which can occur if your application maintains refer-
ences to objects that it no longer needs. As long as the application holds those
references, the memory used by the objects won’t be freed during a garbage collec-
tion; this applies to not only objects your application references but also any objects
those objects reference. For example, assume you read-in an XML document and
need to retain only one small node of data. Most likely, that node references the docu-
ment root, which in turn references all the rest of the nodes in the document.
Although you think you’re retaining only a small portion of the XML content, you’re
retaining the whole document. In such a case, you should copy the required data into
another object and release the whole XML document.

 You can monitor the growth rate of the heap to determine if your application has a
memory leak. If you see that the amount of memory in use after a full garbage collec-
tion continues to increase, then you know you have a memory leak. You can increase
the heap size to forestall the problem, but the ultimate solution is to find and fix the
memory leak.

 If you redeploy an application to the application server often, you might eventually
get an out of memory exception because the permanent generation gets filled with
class objects and runs out of space. You can usually detect that the permanent genera-
tion is out of space because the heap appears to have sufficient space, and the prob-
lem usually surfaces when you redeploy an application.

 You can use the MaxPermSize JVM argument to increase the size of the permanent
generation. The default permanent generation size is usually sufficient for most
needs, and the JVM will automatically adjust the permanent size if it needs more space
or, even, less space. Usually, the permanent generation size remains fairly constant
during the run of a Java application. If you need to set the permanent generation size,
use the PrintHeapAtGC argument to determine the current usage of the permanent
generation and then set MaxPermSize accordingly.

14.5.6 Exploring more tuning options

The previous sections covered the heap settings, which are the most beneficial settings
when tuning a Java application. In this section, we list some other JVM command line
arguments that have also proven to be beneficial.
-XX:+USESPINNING

When this option is set, if a thread finds that a resource it requires is locked, the
thread goes into a busy wait (a tight loop) for a brief period to see if the resource

398 CHAPTER 14 Tuning the JBoss Application Server
becomes free. Although it might seem counterintuitive, on a multiprocessor machine,
having the waiting thread loop for a brief time can result in better performance.
Instead of having the thread give up the processor and forcing the necessary context
switch to run another thread on that processor, the thread that has the resource
locked might be running on another processor and soon release that resource. Don’t
set this option on a single-processor system.
-DSUN.RMI.DGC.CLIENT.GCINTERVAL=<INT> AND -DSUN.RMI.DGC.SERVER.GCINTERVAL=<INT>

When using RMI, which is a given when running an application server, the JVM per-
forms a full collection every 60 seconds to free up any remote objects. Setting these
system properties changes the number of milliseconds the JVM waits between per-
forming such collections. Set these values to a large number such as 3600000 (60 min-
utes). You’ll notice in the run scripts that these are set to 60 minutes already. Wonder
how they knew to make those settings?
-XX:+DISABLEEXPLICITGC

This option forces the JVM to ignore calls to the System.gc() method. We discuss this
further in section 14.7.1.

 As you’ve probably noticed, you can do a lot to tune the JVM, and most of it centers
around managing the heap. Now we move up to the next level in the stack—the appli-
cation server.

14.6 Tuning JBoss AS
You have several opportunities for performance tuning in JBoss AS. Some of these
benefit all applications, whereas others benefit only certain applications that make use
of the service being tuned. Each opportunity is examined in the sections that follow.

 Besides the items mentioned in this chapter, we mention several other items else-
where in the book. One is to reduce the amount of log output; see chapter 2. Another
is to remove unneeded services. Because this practice is also common in moving the
server into production, we cover it in chapter 15. Yet another is to adjust the hot
deployer to either turn off automatic scans or to increase the wait time between scans.
See chapter 3 for details.

14.6.1 Configuring data sources

JBoss AS maintains a pool of database connections for use by applications deployed to
it. In the *-ds.xml file, you can specify information about the pool size. Table 14.6 lists
the pool size configuration options and how they’re used.

Table 14.6 Data source pool size options

Option Default Description

<min-pool-size> 0 The minimum number of connections maintained to the
database

<max-pool-size> 20 The maximum number of connections maintained to the
database

399Tuning JBoss AS
How big should you make the database connection pool? That depends on the appli-
cation and how it’s used. If each request to the application results in a database access,
you need more connections than if the vast majority of requests don’t access the data-
base. Also, you don’t need as many connections as users. Typically, a request holds on
to a connection for a short time, so even as few as 20 connections can be sufficient to
support 100 simultaneous users.

 The best way to size the connection pool is to monitor the connection pool usage.
When a data source is deployed, the application server creates three MBeans, one of
which manages the connection pool. This MBean is named

Jboss.jca:name=<dsname>,service=ManagedConnectionPool

where <dsname> is the name of the data source. Monitor the key properties on this
MBean, which are listed in table 14.7.

If the ConnectionCreatedCount and ConnectionDestroyedCount become too high,
increase the <min-pool-size> because the application server is spending too much
time allocating, deallocating, and then reallocating connections as the number of con-
nection requests increase and decrease. Also, increase the <idle-timeout-minutes> to
prevent unused connections from being destroyed right before they’re suddenly
required again.

 Don’t set the pool size too high. Testing has shown that having up to 500 connec-
tions provides reasonable performance, but increasing to a higher number can

<blocking-
timeout-millis>

30 sec. The amount of time a thread waits on a connection if all the
connections are in use and the maximum connections have
been allocated

<idle-timeout-
minutes>

0 The amount of time the application server waits before deal-
locating a connection that’s no longer needed

Table 14.7 Key connection pool MBean properties

Property Description

ConnectionCount The number of connections to the database

AvailableConnectionCount The number of database connections not allocated to a request

MaxConnectionsInUseCount The largest number of database connections ever allocated to
requests

InUseConnectionCount The number of database connections allocated to requests

ConnectionCreatedCount The total number of connections created by the application server

ConnectionDestroyedCount The total number of connections closed by the application server

Table 14.6 Data source pool size options (continued)

Option Default Description

400 CHAPTER 14 Tuning the JBoss Application Server
adversely affect performance. Each connection in the pool uses resources in the appli-
cation server and the database. Having too many connections starts to tax those
resources. These recommendations are for when you have only a single data source to
a single database. If you have multiple data sources or multiple databases managed by
the same database server, adjust the pool sizes accordingly. For example, if the system
shows performance degradation with over 500 connections and you have 2 data
sources, then the maximum combined connections should be no more 500.

 Finally, if your application has a consistent usage pattern, consider setting
<min-pool-size> to the same value as <max-pool-size>. If not, set <min-pool-size>
to handle the number of connections required when the application isn’t busy.
PREPARED STATEMENT CACHE

Another configuration option in data sources is the prepared statement cache. This
cache holds recently used prepared statements in case they’re used again. Using a pre-
pared statement causes the database to cache the query plan it uses to perform the
query or update. Applications should always be written so that often-used SQL state-
ments are defined using prepared statements. Table 14.8 lists the properties of the
*-ds.xml configuration file that manage the prepared statement cache.

Because the database also caches the SQL statements, you should coordinate the
cache sizes between the database and the data source. The database typically provides
statistics on the cache size and hit rates. Use that data from the database to adjust both
the database and data source cache sizes.

14.6.2 Configuring the HTTP request thread pool

As with database connection pools, you can configure a pool of threads to handle
HTTP requests. The HTTP request thread pool is defined in the Connector element in
the server/xxx/deployer/jbossweb.sar/server.xml file. A pool exists for each connec-
tion defined. The settings of interest are listed in table 14.9.

Table 14.8 Prepared statement cache properties

Option Default Description

<prepared-statement-
cache-size>

0 The number of prepared statements to hold in the cache.

<share-prepared-
statements>

False If a request creates the same prepared statement more
than once in a given request, should the same prepared
statement object be used? Note that reusing the prepared
statement in this case could cause the application to get
unintended results if the application requested the result
set from the first prepared statement after creating the sec-
ond prepared statement.

401Tuning JBoss AS
Listing 14.3 shows the HTTP connector set to the default values for these properties.

<Server>
 . . .
 <Service name="jboss.web">
 <Connector protocol="HTTP/1.1" . . .
 maxThreads="200" minSpareThreads="4"
 maxSpareThreads="50" acceptCount="10" >
 . . .
 </Service>
</Server>

Although you should set maxThreads to a large enough number to handle your incom-
ing requests, realize that each thread takes up system resources and each thread con-
tends for computer resources with all the other threads. Usually, 400 threads are
sufficient to handle a large number of users. If there are too many threads, performance
drops. Use a combination of maxThreads and acceptCount to handle the requests.
CONFIGURING THE AJP REQUEST THREAD POOL

The AJP connector, which is defined in the server.xml file and uses port 8009 by
default, also has a thread pool. Its options are the same as those for the HTTP thread
pool. You should coordinate the settings for the AJP thread pool with the native web
server front end such as IIS and Apache HTTP Server.

14.6.3 Tuning the JSP servlet

The server/xxx/deployers/jbossweb.deployer/web.xml file contains initialization
parameters for the JSP servlet, org.apache.jasper.servlet.JspServlet. Table 14.10
lists some of the parameters that affect performance.

Table 14.9 HTTP thread pool properties

Option Default Description

maxThreads 200 The maximum number of threads available to process requests.
This value limits the number of requests that can be handled
simultaneously.

minSpareThreads 4 The number of threads the web server tries to keep available above
and beyond the number currently in use. The two spare threads
settings are used to ensure that there are idle threads available to
immediately handle future requests.

maxSpareThreads 50 If more threads than this are idle (not processing a request), then
those threads are stopped and deallocated.

acceptCount 10 The maximum number of requests that can be queued, waiting for
a thread to be freed. If the queue is full, the application server
returns a 503 HTTP error.

Listing 14.3 Server.xml file with default thread pool property settings

402 CHAPTER 14 Tuning the JBoss Application Server
Listing 14.4 contains an excerpt from the web.xml file showing the declaration of the
jsp servlet.

<servlet>
 <servlet-name>jsp</servlet-name>
 <servlet-class>org.apache.jasper.servlet.JspServlet</servlet-class>
 . . .
 <init-param>
 <param-name>development</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>checkInterval</param-name>
 <param-value>300</param-value>
 </init-param>
 . . .
</servlet>

Notice that development mode is turned off B and a 5 minute (300 second) interval
is set for rechecking the JSPs for changes C.

 As you can see, there are a number of opportunities for tuning the application server.
Now we’re ready to look at the top layer of the stack—tuning the application itself.

14.7 Tuning your application
You can analyze the performance of your application use using a variety of profiling
tools. These tools can identify which areas of your code could benefit from performance

Table 14.10 JSP servlet properties

Parameter Default Description

development True If true, then the application server checks to see
if the JSP has been updated using the modification
text interval. If false, changed JSPs are compiled
in the background using the check interval.

checkInterval 0 The number of seconds between checks to see if
any JSPs need to be recompiled. If 0, the JSPs are
never checked for changes or recompiled. Used
when development is false.

modificationTestInterval 4 The number of seconds to wait before the JSP is
checked for updates. If 0, the JSP is checked each
time it’s accessed. Used when development is true.

genStrAsCharArray False Generates strings as character arrays. Under some
circumstances can improve performance.

trimSpaces False Removes extraneous white space from the resulting
HTML text, decreasing the size of the response sent
back to the client.

Listing 14.4 Web.xml file with selected tuning settings

Turns off
development mode

B

Sets modification test
interval to 300 seconds

C

403Tuning your application
tuning. Both open source tools, such as the profiler that comes with IDEs (for example,
NetBeans and Eclipse), and commercial tools, such as JProbe, are available. Some focus
on the Java code, but others can take other parts of the system, such as the database,
into account.

 When using a profiler, you shouldn’t run high-load tests because of the overhead
of the profiler. A profiler is useful for running a handful of requests through a system
and seeing the relative time those requests spend in different parts of the code. You
can then pinpoint sections of your code that could benefit from improvements. When
using a profiler, you might want to reduce the number of simulated users to one; oth-
erwise, the relative times get skewed as they’re divided among many threads. In gen-
eral, having more than one thread also prevents you from getting useful profiling
information from code that may spawn multiple execution threads.

 Using a profiler and analyzing an application with it is a little beyond what we want
to accomplish in this chapter. But we do want to impart some hints and tips in the sec-
tions that follow.

14.7.1 Avoiding System.gc

An application deployed to an application server should never call System.gc(). This
method requests that the JVM perform a full garbage collection. The JVM is free to
ignore this request but usually honors it. You can convince the JVM not to honor this
request by using the -XX:+DisableExplicitGC command line argument.

 There are some who recommend calling System.gc() at certain times during an
application’s execution, usually during a pause in the application or after a significant
task has been finished. The theory is that if the garbage collection is performed dur-
ing a quiet time that the application will be set to easily handle the next task without
degrading response time. The problem with this approach in an application server is
that the System.gc() call affects the entire application server, including all the appli-
cations deployed to it. An individual application deployed to an application server
can’t know when the whole application server and all its applications are in a quies-
cent state that warrants taking time to collect garbage.

 Note that JBoss AS calls System.gc() at key points during initialization. It can do so
because it knows the state of the applications at that time. Performing System.gc()
during initialization makes sense because it cleans up objects necessary to start up the
application server but not required to run it.

14.7.2 Taking a thread dump

Taking a thread dump helps you determine what the application server is doing at a
particular moment in time. A thread dump lists all the threads in a Java application
and provides a stack trace for each thread. Examining the thread dump can provide
clues if the application server pauses for some reason. For example, assume that, after
deploying a certain application, you find an unusual pause when the application
server starts. A thread dump can help you track down the cause for the pause.

404 CHAPTER 14 Tuning the JBoss Application Server
 The JVM produces a thread dump when it receives a QUIT signal. This signal can be
sent in a variety of ways but is typically sent by using a command that sends signals or
by using a keystroke combination in the command window used to start the Java appli-
cation. Table 14.11 lists the keystrokes and commands that are used to generate a
thread dump on a variety of OSs.

You can also use another mechanism to get a thread dump: the JConsole GUI applica-
tion provided with the 5.0 JDK.
USING JCONSOLE

The JConsole window contains six tabs that show various data about an application.
One of those tabs, labeled Threads, provides the same information as a thread dump,
as illustrated in figure 14.10.

You must start the application server with the -Dcom.sun.management.jmxremote JVM
argument to use the JConsole with the application server. You can either set the
JAVA_OPTS environment variable or modify the run scripts. Once the application
server is running, run JConsole and a dialog box appears enabling you to select the
Java application to monitor. Select the application server. This technique works when
JConsole and the application server run on the same computer. You can also run JCon-
sole on a remote computer; to find out how, read the JConsole documentation.
UNDERSTANDING THREAD DUMPS

Try this. Bring up the application server but don’t access it. Then take a thread dump.
Notice that a lot of text is output to the command window. Either set the buffer in the
command window to a large size or, when you bring up the application server, redirect
the output (both standard out and standard error) to a file.

Table 14.11 Taking a thread dump

OS Keystrokes Command

Windows <ctrl><break>a -none-

UNIX/Linux <ctrl>\ kill [–QUIT|-3] <process-id>

a. In cygwin, this also stops the process.

Figure 14.10 Viewing threads using JConsole

405Tuning your application
 The thread dump lists every thread allocated. Each thread has a name, and most of
the names provide a good hint of that thread’s usage. For example, you can guess the
functions of the threads named RMI TCP Accept-4444 and ScannerThread. The threads at
the start of the thread dump are the ones used by the application server. The threads
at the end of the thread dump, from DestroyJavaVM on, are JVM threads. Table 14.12
lists a few threads of interest.

Stack traces appear below each of the application server-related threads and a few of
the JVM-related threads. Use the stack traces to determine what was going on at the
time the thread dump was taken. For example, an http-0.0.0.0-8080-n thread might
have a stack trace similar to the excerpt shown in listing 14.5.

"http-0.0.0.0-8080-2" daemon prio=5 tid=0x00978a58
 nid=0x17ac runnable [0x0306e000..0x0306fd68]
at java.net.SocketInputStream.socketRead0(NativeMethod)
at java.net.SocketInputStream.read
 (SocketInputStream.java:129)
at com.mysql.jdbc.util.ReadAheadInputStream.fill
 (ReadAheadInputStream.java:113)
at com.mysql.jdbc.util.ReadAheadInputStream.
 readFromUnderlyingStream.IfNecessary
 (ReadAheadInputStream.java:160)
at com.mysql.jdbc.util.ReadAheadInputStream.read
 (ReadAheadInputStream.java:188)
. . .
at org.jboss.resource.adapter.jdbc.WrappedConnection
 .prepareStatement(WrappedConnection.java:187)
at com.myorg.product.dao.jdbc.JdbcDaoBase.findById
 (JdbcDaoBase.java:270)
at com.myorg.product.dao.jdbc.JdbcProductDao.find
 (JdbcProductDao.java:234)
at com.myorg.product.ejb.ProductSessionBean.find
 (ProductSessionBean.java:235)
at sun.reflect.GeneratedMethodAccessor87.invoke
 (Unknown Source)

Table 14.12 Selected threads in a thread dump

Thread Name Description

CompilerThread1 Used to compile Java code, usually JSPs. There could be as many of these
threads as there are processors on the computer, in which case the digit at the
end is different. Threads by this name aren’t present when not compiling.

GC task thread#1 Used to run the garbage collection. There could be as many of these threads as
there are processors on the computer, in which case the digit at the end is differ-
ent. Threads by this name aren’t present when not collecting garbage.

http-0.0.0.0-8080-1 Used to process requests from clients over HTTP. The IP address (0.0.0.0) changes
based on the socket connection opened, and the port (8080) changes based on the
HTTP port. The final digit is different for each thread handling requests.

Listing 14.5 Excerpt from a thread dump

B Methods
in client

C Methods in
proxy object

D Database
access
methods
in client

JDBC driver
methods

E

406 CHAPTER 14 Tuning the JBoss Application Server
at sun.reflect.DelegatingMethodAccessorImpl.invoke
 (DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:324)
. . .
at org.jboss.proxy.ClientContainer.invoke
 (ClientContainer.java:100)
at $Proxy64.find(Unknown Source)
at com.myorg.product.proxy.ProductProxyRemote.find
 (ProductProxyRemote.java:56)
at com.myorg.servlets.DataServletBase.doPost
 (DataServletBase.java:81)
at javax.servlet.http.HttpServlet.service
 (HttpServlet.java:717)
. . .
at org.apache.tomcat.util.net.MasterSlaveWorkerThread.run
 (MasterSlaveWorkerThread.java:112)
at java.lang.Thread.run(Thread.java:534)

Let’s examine this stack trace from the bottom to the top. The thread named
http-0.0.0.0-8080-2 B is processing a POST request from a client G. This request uses
a proxy object for a remote EJB F to access some data from a database using JDBC E.
The database is MySQL D, and the database driver is currently waiting for the data-
base to reply to the last request C.

 Usually, taking one thread dump isn’t sufficient. Although it provides a snapshot of
what’s happening at that moment, it doesn’t necessarily pinpoint where a performance
problem lies. Take another thread dump and, if the listed thread is still processing the
request, look at what changed. If all the line numbers for each entry in the stack are the
same, then the thread is still waiting for the database, in which case you should turn
your attention to the database. If the line number for the ProductSessionBean.find
method changed and everything below that line is the same, then you have a problem
in the session bean code. Likewise, if the DataServletBase.doPost line number
changed and the rest of the stack below it’s the same, suspect the servlet code.

14.8 Summary
This chapter highlighted a number of areas that you can look into to improve the per-
formance of applications deployed to JBoss AS. You should understand that perfor-
mance tuning is an ongoing process, and you should have some ideas of the types of
changes you can make to improve performance.

 We took a holistic approach to tuning, looking at the entire software stack. We pro-
vided specific tuning areas for most of the components in the stack, including the
following:

■ Configuring network cards
■ Selecting number and type of CPUs
■ Setting processor affinity
■ Monitoring garbage collection statistics
■ Setting heap sizes

JDBC driver
methods

E

F Methods in
socket library

G Thread identity
information

407References
■ Setting miscellaneous JVM options that affect performance
■ Setting the various pool sizes in the application server and how to monitor the

usage of the objects in the pools
■ Setting miscellaneous application server options that affect performance
■ Taking and interpreting a Java application stack trace

With each component finely tuned, you’ll get the most performance out of the sys-
tem. Also, by taking a holistic approach, you won’t exert unnecessary effort in tweak-
ing things that don’t matter.

 You might have noticed that we used the words probably, usually, and typically often.
Because every application behaves differently, we can’t tell you specifically what tuning
you should do to tune your application for optimum performance. In the same way
that tuning a pickup truck is different from tuning a sports car (you tune the former
to improve towing power so that you can haul your boat/camper to the river/moun-
tains/ocean, whereas you tune the latter to increase speed and acceleration), tuning
one application that does one task is different from tuning another that performs
some other task.

 So far in this part of the book, we’ve covered two major topics for putting your
application server into production—clustering and performance. You’ll want to keep
a few other things in mind when moving into production, and we cover those in the
next, and final, chapter.

14.9 References
Tuning Garbage Collection with the 5.0 Java Virtual Machine—http://java.sun.com/docs/hotspot/

gc5.0/gc_tuning_5.html
JConsole, Java Monitoring and Management Console—http://java.sun.com/javase/6/docs/

technotes/tools/share/jconsole.html
Using JConsole to Monitor Applications—http://java.sun.com/developer/technicalArticles/J2SE/

jconsole.html

http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jconsole.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jconsole.html
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

Going to production
By this point, we hope this book has guided you through understanding the many
features and idiosyncrasies of JBoss AS. We’ve shown you how to install JBoss AS,
start it, and deploy applications into it. We’ve taught you how to work with the vari-
ous component servers such as JBoss Web Server, the EJB server, the messaging
server, and the web services container. You’ve also learned about the many services
available to components that run in these servers, such as security, clustering,
and AOP.

 But if you’ve flipped open to this chapter, chances are that you’re ready to take
your application from a development environment into production. Many things

This chapter covers
■ Selecting a platform to host JBoss AS
■ Collocating multiple JBoss AS instances on the

same hardware
■ Removing unnecessary services
■ Securing the application services
■ Replacing the default Hypersonic database
■ Registering the application server as a service
■ Configuring JSP compilation
408

409Selecting a platform
in the previous chapters are useful to know when going into a production environ-
ment. For example, in the clustering chapters, we talk about deployment topologies.
Picking a deployment topology and testing it for performance and scalability
are important things to do before putting your application into a production envi-
ronment. Enabling security and tweaking your application and server settings to
enhance performance are other examples of things that must be done before going
into production.

 But we didn’t cover everything about taking JBoss AS into a production environ-
ment in the other chapters. In this chapter, we focus on several other things important
to consider for production applications, such as selecting a platform, running JBoss AS
as a service, and running multiple JBoss AS instances on the same machine. We also
talk about how to remove unneeded services, secure the management applications,
change the default data source, and precompile JSPs.

 Discussing how to select a hardware and software platform to run JBoss AS on
seems like an appropriate place to start, so let’s discuss that first.

15.1 Selecting a platform
Selecting a platform for development, testing, and production can be quite a daunt-
ing task. There are many decisions to make, as well as many options. Aside from select-
ing which version of JBoss AS you’re going to use, you have to select the Java Virtual
Machine (JVM), the OS, and the hardware. You also have to know how to configure
each of these software and hardware components within your environment. Different
components and configurations can lead to differences in performance, compatibil-
ity, reliability, and support.

15.1.1 Selecting a JVM

The JVM is a specification for an abstraction on top of a machine’s hardware and OS that
enables the execution of Java programs. Java programs are compiled into byte-code that
can be interpreted by the virtual machine. The benefit to having a virtual machine
instead of compiling code into native binaries is that the code can be more secure and
portable. If you download the Java 2 Platform, Standard Edition Version 5.0 (J2SE 5.0)
or the Java Standard Edition 6 (Java SE 6) from Sun, the JVM is included.

 Despite having a standard specification, different vendors’ JVMs can behave quite
differently. The different products might have different bugs, different features, or
different interpretations of ambiguities in the specification. Different vendors make
JVMs, including Sun, IBM, and BEA. Sun makes the HotSpot VM which is the industry
standard. You might choose the IBM VM if you’re going to deploy your application on
an IBM mainframe or on the AIX operating system. BEA claims that its JRockit VM has
better performance and reliability on Intel platforms, and Intel seems to favor both
the BEA and IBM JVMs over the Sun JVM for operation on its processors.

 The Sun HotSpot JVM is installed as part of the J2SE Java Runtime Environment.
You can download the installer for the either the SDK or the Java Runtime Environ-
ment (JRE). The JRE is installed as part of the SDK. JBoss AS only requires the JRE to

410 CHAPTER 15 Going to production
run, but you might want to use the development tools that come with the SDK if you
aren’t using an IDE that has its own development tools. JBoss AS only needs JSPs
to compile, but it uses the Eclipse JDT library, which is able to compile code with
just a JRE.

 You can evaluate these JVMs and draw your own conclusions; but, if performance
isn’t a concern, we recommend defaulting to the Sun HotSpot JVM because it’s the most
widely used, tested, and supported. The HotSpot JVM is available for Linux, Windows
XP, Windows 2000, Windows NT, and Solaris. It also has support for 64-bit platforms.

 JBoss AS 5 requires the Java 5 JVM at minimum. The Java 5 and Java 6 JVMs are sig-
nificantly faster than previous versions and offer better support for newer libraries
and APIs. We recommend going with the latest version of the Java 6 JVM; but, if you’re
unable to use Java 6, we strongly encourage you to select the latest version of Java 5.

 JBoss AS will try to find the Java executable in the following places, in order:

■ The JAVA environment variable
■ The JAVA_HOME environment variable
■ In a directory on your PATH environment variable

If the Java executable is in your path, you can check which version of Java you’re run-
ning by issuing the following command at the command prompt:

java –version

If you have a JAVA_HOME environment variable defined, you can check the version, as
follows:

$JAVA_HOME/bin/java -version (on Unix)
%JAVA_HOME\bin\java -version (on Windows)

The output from any of these commands is

java version "1.5.0_11"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_11-b03)
Java HotSpot(TM) Client VM (build 1.5.0_11-b03, mixed mode, sharing)

This code shows you what the output might look like for the Sun’s JVM, version 1.5.0.
Let’s talk about how to select a JBoss AS version.

15.1.2 Selecting a JBoss AS version

This book is based on JBoss AS 5, but you may not be able to use this latest version of
JBoss AS in all cases. Generally, the different major versions of JBoss AS are compatible
with the different J2EE (or Java EE) specifications. If you have a specific Java or J2EE
version that you must remain compatible with, then you might have to choose an
older version of JBoss AS. Table 15.1 shows the various JBoss AS versions and which
JVMs and Java EE specifications they’re associated with.

 If you have no restrictions, then we recommend standardizing on JBoss AS 5, JVM 6,
and Java EE 5, all of which are the latest versions of each technology available at the
time this book was written. JVM 6 came out while the book was still being written; we

411Selecting a platform
recommend that you use it only for JBoss AS 5 because it isn’t qualified for use with
earlier versions and various users have noted incompatibilities with JBoss AS 4.0.

NOTE As per the Sun web page, “The name of the Java platform for the enter-
prise has been simplified. Formerly, the platform was known as Java 2
Platform, Enterprise Edition (J2EE), and specific versions had ‘dot num-
bers’ such as J2EE 1.4. The ‘2’ is dropped from the name, as well as the
dot number. So the next version of the Java platform for the enterprise is
Java Platform, Enterprise Edition 5 (Java EE 5).”

If you’re on JBoss AS 3, we strongly encourage you to move to either JBoss AS 4 or JBoss
AS 5 and switch to JVM 1.5 or JVM 1.6. If you’re unable to move off of JBoss AS 4, we
encourage you to try and upgrade to the latest release of JBoss AS 4.2 and switch to
JVM 1.5 or JVM 1.6. If you standardize on the latest versions of both JBoss AS and the
JVM, you can take advantage of the latest features and services, and you’ll have an eas-
ier time migrating to future versions of each technology.

 The versioning for the JBoss AS releases follows a set pattern—major branches are
the first number, minor branches are the second number, and bug fix releases are the
third number. For example, if you were considering using JBoss AS 5.1.2, the major
branch is 5, the minor branch is 1, and the bug fix release branch is 2. Other version-
ing abbreviations you will run across are

■ CR —Candidate Release (beta release)
■ DR —Developer Release (alpha release)
■ SP —Service Pack (patch release)
■ GA —General Availability (final, production release)

As far as compatibility, bug-fix releases should contain only bug fixes and very minor
improvements, but the JBoss AS team tends to change existing services or add new ser-
vices to what could be termed bug-fix releases. For example, the plumbing to handle
web services changed between 4.0.2 and 4.0.3. In many cases, you won’t notice such
changes; but, in the case of the web-services change, anyone using AXIS-based tools, such
as AXIS-specific annotations with XDoclet, found that they could no longer compile and
deploy their web services in 4.0.3. Therefore, you should thoroughly test your applica-
tions before moving up to the latest bug-fix release. We should also note that the JBoss
AS team has pledged to do better in this regard, starting with the 4.2.0 release.

Table 15.1 The JVM and Java EE versions that the different JBoss AS versions support

JBoss AS version Minimum JVM version required J2EE/Java EE version supported

JBoss AS 3 JVM 1.3 J2EE 1.3

JBoss AS 4.0 JVM 1.4 J2EE 1.4

JBoss AS 4.2 JVM 1.5 J2EE 1.4/Java EE 5 (partial)

JBoss AS 5 JVM 1.5 Java EE 5

412 CHAPTER 15 Going to production
 Minor releases are typically backward compatible, but might add new features.
Backward compatibility between major versions of the JBoss AS isn’t guaranteed, but
migrating standard services from one version to the next is typically straightforward
and mainly requires changes in configuration files. Many of the standard Java services
are specified to be backward compatible, so upgrading can be quite trivial.

 Upgrading JBoss AS–specific features can be more difficult than upgrading Java EE
standard features, but often even these are mostly compatible. If you’re using a service
on one version of the JBoss ASs, that service might be replaced or updated in a future
version. You might also want to update your application to take advantage of new ser-
vices that a newer version of JBoss AS has to offer. In these cases, your upgrade effort
might be more difficult.
UNDERSTANDING THE JBOSS ENTERPRISE APPLICATION PLATFORM (EAP)

In April of 2007, Red Hat announced a change in how the JBoss AS would be sup-
ported, using a model that Red Hat uses with its operating systems. The various JBoss
projects, such as the application server, would continue to be freely available on the
web and would be released as new features became available. These are the commu-
nity releases, available to everyone, but provided without support. This approach is
similar to the one Red Hat uses with its Fedora Core releases.

 Key components are packaged together, qualified and tested, and then released
under a paid support contract. These are the enterprise releases, which come with
support and periodic patches to fix bugs. This approach is similar to the one Red Hat
uses for its Red Hat Enterprise Linux (RHEL) releases. Table 15.2 identifies the vari-
ous enterprise packages and lists the components that make up each package.

 Newer platforms might contain different sets of components than what are listed in
this table. Refer to the JBoss website for the exact definition of any of these platforms.

 You can use the community editions for development work, and even for produc-
tion, but you’ll be on your own if problems come up. If you’re comfortable with patch-
ing the application server or rolling your applications over to newer versions, then the
community editions are for you. But, if you want more stability and prefer that some-
one else provide patches, then you should look into obtaining the enterprise editions.

Package name Components

JBoss Enterprise Application Platform JBoss AS
JBoss Web Server
JavaServer Faces
JBoss Clustering
JBoss Cache
JBoss Messaging
JBoss Transactions JTA
Hibernate
JBoss Seam

JBoss Enterprise Portal Platform All the other components plus
JBoss Portal

Table 15.2
The components that
make up the Enterprise
packages

413Selecting a platform
15.1.3 Selecting a platform

Frequently, organizations choose a production OS and hardware for nontechnical rea-
sons. Making these decisions for nontechnical reasons isn’t unwarranted because the
ability to support the environment has much to do with your current IT resources and
company standards. It costs more to start supporting a technology not currently being
supported within an organization.

 For many applications, the technical advantages that would be evident between dif-
ferent hardware and OS platforms are nominal. If your application runs internal to
your organization, runs behind a secure network, and doesn’t necessarily need to be
performant, then the OS and hardware might not matter. But, if your application runs
a shopping cart that requires state management for thousands of simultaneous users,
you might want a system that can support a large cache, has good memory manage-
ment, can do efficient garbage collection, and has plenty of security patches in place.

Remember that End User License Agreement (EULA) that you agreed to
when you first installed Windows XP or Vista (or 2000 Workstation, for
that matter)? You know—the one you clicked through but didn’t bother
to read? Better go back and read it. It contains this little clause (actually,
several of them) that effectively states that you can’t host more than 10
incoming connections. If you deploy a web application, you can legally
accept only 10 active users on your application. Although that number is
an acceptable limit during development or for production in a small (10
people or less) office, it isn’t acceptable for most enterprise software
applications. To stay legal, you should deploy to Windows Server, which
has no such limitation. Then again, you could always switch to Linux…

The main technical reasons for selecting one OS over another are security and perfor-
mance. No matter which brand of OS you choose, the safest bet is to choose a more
mature version and install all the patches and updates available from the vendor(s).
Staying up to date helps minimizes security vulnerabilities. In terms of performance,
you must consider how an OS manages processes/threads and memory. For many
applications, you can increase your response time by caching data in memory. To han-
dle a large in-memory cache, you need a large Java heap, which amounts to having an
OS that can support large memory allocations. The largest memory allocations cur-
rently possible are available when using a 64-bit JVM, a 64-bit OS, and a 64-bit processor.

 The drawback to having large memory allocations is that garbage collection
becomes more costly. Multicore or dual processor CPUs can minimize the pauses that
occur during garbage collection. Most JVM 5 and JVM 6 vendors have 64-bit implemen-
tations of the JVM available.

 A few years ago, Intel released hyper-threading (or simultaneous multi-threading)
technology into its processors. In single processor CPUs, many of the components
within the processor are idle. Hyper-threading technology creates two logical proces-
sors by running multiple threads through the processor simultaneously, trying to use
these idle components. Certain parts of the processor are duplicated and others are

WARNING

414 CHAPTER 15 Going to production
shared to facilitate multiple threads of operation. This technology is said to run faster
in applications that makes use of many threads, but slower in single-threaded applica-
tions. Several hardware vendors also have multicore processors available, where there
are multiple processor cores available on one processor. You must make sure that the
OS that you’re running supports hyper-threading and/or multiple cores if you choose
to go this route.

 Now that you’ve learned about how to select an environment, let’s explore how
you might run multiple JBoss AS instances on the same server.

15.2 Collocating multiple application server instances
At some point, the demands for your applications will exceed the ability of a single
application server instance to handle them. For example, you might already have a
large contingent of users, or the success of your business might soon cause a rapid rise
in the number of visitors to your site. Either way, you should deploy a second applica-
tion server. There are several ways to approach this.

 First, you could purchase a new system and place another copy of the application
server on that system. This is the typical usage scenario for blade systems, with a single
hardware rack hosting multiple systems, each running its own application, database,
or web servers.

 Second, if you have a large server (say, one that has 8 CPUs), you could run virtual
servers on that hardware. In this case, assuming you still have room on that server, you
could easily add another virtual server on that box and deploy another instance of the
application server to the new virtual server.

 In either of these cases, no special configuration is required for the application
server; in each case the application server runs in its own environment. We leave dis-
cussions on the pros and cons of using blades or server virtualization to the market-
ing departments of those companies interested in pushing one of the technologies or
the other.

 The third alternative, and one apropos to this chapter, is to run a second instance
of the application server on the same box as an existing instance. This alternative
assumes that you have a fairly decent-sized system on which you can easily run multi-
ple application server instances. If you decide to go this route, there are a few things
to keep in mind, such as the following:

■ Making sure that instances do not overwrite each other’s files
■ Making sure that the instances don’t open the same TCP ports
■ Determining how to shut down each instance

These are the topics which we cover in this section.

15.2.1 Preventing file clashes

The first thing you need to realize is that you shouldn’t run the same server configura-
tion twice—that is, don’t open two command prompts and enter

run –c myconfig

415Collocating multiple application server instances
in both windows. The two application server instances will trip all over each other as
they attempt to update the same log file, data directory, and tmp directory.

 But this is a trivial problem to fix. Make a copy of your configuration directory so
that you have, for example, myconfig and myconfig2. Then open two command
prompts and in one enter

run –c myconfig

and in the other enter

run –c myconfig2

Now, each one uses its own configuration, which uses its own directory tree. Result: no
more file clashes.

15.2.2 Preventing port clashes

If you literally followed the steps in the previous section, you’ll have run into the sec-
ond clash—both application server instances are attempting to use the same ports.
Two mechanisms you can use to avoid a port clash are assigning different port num-
bers or binding to different host addresses. We cover the port binding mechanisms
first and then host-address binding.
CONFIGURING PORTS

Quite a few services in the application server open ports: the HTTP port, the HTTPS
port, JNDI, remoting, and so on. The ports these services use are defined in the
server/xxx/conf/bindings.xml file. If you examine this file, you’ll find a bean named
PortsDefaultBindings, which has entries similar to the one shown in listing 15.1.

<bean name="PortsDefaultBindings"...>
 <constructor>
 <parameter>
 <set>
 <bean class="org.jboss.services.binding.ServiceBinding">
 <constructor>
 <parameter>jboss:service=Naming</parameter>
 <parameter>Port</parameter>
 <parameter>${jboss.bind.address}</parameter>
 <parameter>1099</parameter>
 </constructor>
 </bean>
 . . .

This example entry defines the JNDI port used by the naming service. The naming ser-
vice is defined in the server/xxx /deploy/naming-jboss-beans.xml file, which refer-
ences the port defined in bindings.xml. Listing 15.2 illustrates the reference.

<bean name="RemoteNamingBean" ...>
 ...
 <property name="port">

Listing 15.1 Port assignment example from bindings.xml

Listing 15.2 Reference JNDI port from naming service

Identifies
name for port

416 CHAPTER 15 Going to production
 <value-factory bean="ServiceBindingManager"
 method="getIntBinding">
 <parameter>jboss:service=Naming</parameter>
 <parameter>Port</parameter>
 </value-factory>
 </property>
 ...

The naming service identifies the port to use by its name in the bindings.xml file:
jboss:service=Naming B. This pattern of defining the ports and their names in
bindings.xml and referencing those names in the various *-service.xml configuration
files for the various services is repeated for most of the ports.

 One major exception is the ports defined for HTTP, HTTPS, and AJP. Those ports
are handled by a transform defined by the JBossWebConnectorXSLTConfig bean at
the end of the bindings.xml file. The transform is applied to the server/xxx/deploy/
jbosssweb.sar/server.xml file. Although you could change the ports in server.xml,
we recommend that you modify the ports in bindings.xml if you need to change the
port assignments.

 Now that you know how port assignments are made, you’re probably wondering
how to best assign different ports to your two application server instances. One way is
to change the port numbers for each port in the PortsDefaultBindings bean for the
second server. But there’s an easier way. After the PortsDefaultBindings bean in the
bindings.xml file, you’ll find a Ports01Bindings bean, as shown in listing 15.3.

<bean name="Ports01Bindings" ...>
 <constructor>
 <parameter><inject bean="PortsDefaultBindings"/></parameter>
 <parameter>100</parameter>
 ...
 </constructor>
</bean>

The first parameter to the Ports01Bindings constructor is the PortsDefaultBind-
ings bean. The second parameter, 100, defines the increment to use when setting the
port numbers. In this case, 100 is added to each port number. For example, the JNDI
port becomes 1199. Another bean, named Ports02Bindings, adds 200 to each port
number. You can declare other beans in the bindings.xml file to use other port num-
ber increments.

 Earlier in the bindings.xml file, you’ll find the ServiceBindingManager bean, which
manages all the port bindings. The declaration for this bean is shown in listing 15.4.

<bean name="ServiceBindingManager"...>
 <constructor>
 <parameter>${jboss.service.binding.set:ports-default}

➥ </parameter>

Listing 15.3 Ports01Bindings bean in bindings.xml

Listing 15.4 ServiceBindingManager bean in bindings.xml

References
port by name

B

Identifies default
binding name

B

417Collocating multiple application server instances
 <parameter>
 <bean name="ServiceBindingStore"...>
 <constructor>
 <parameter>
 <map keyClass="java.lang.String"
 valueClass="java.util.Set">
 <entry>
 <key>ports-default</key>
 <value><inject bean="PortsDefaultBindings"/>
 </value>
 </entry>
 <entry>
 <key>ports-01</key>
 <value><inject bean="Ports01Bindings"/>
 </value>
 </entry>
 <entry>
 <key>ports-02</key>
 <value><inject bean="Ports02Bindings"/>
 </value>
 </entry>
 </map>
 </parameter>
 </constructor>
 </bean>
 </parameter>
 </constructor>
</bean>

The ServiceBindingManager bean contains a table that maps binding names, such as
ports-01, to the binding beans we discussed earlier, such as Port01Bindings C. The
ServiceBindingManager bean is also told which binding to use by default B. Notice
that the default binding name is set to the value of the jboss.service.binding.set
system property, with ports-default being used if that property isn’t set.

 To use the port assignments defined by the Ports01Bindings bean, set the
jboss.service.binding.set system property to ports-01 when starting the applica-
tion server. Continuing our earlier example, you’d start myconfig2 as follows:

run –c myconfig2 -Djboss.service.binding.set=ports-01

The application server uses port numbers that are 100 higher than the default port
numbers to avoid conflicting port assignments when running both the myconfig and
myconfig2 configurations.
BINDING TO A HOSTNAME

When you bring up the server, which IP address does it use? By default, it uses 127.0.0.1
(or ::1 if you’re using IPv6), also known as localhost. But there might come a time when
you want to enable access to the application server from other computers. You can
accomplish this by binding the application server ports to a particular address, an
approach also known as multihoming.

 Down at the socket layer, binding a port requires two pieces of information: the
port number and the IP address. As we said, when you start the application server, it

Maps binding
names to bindings

C

418 CHAPTER 15 Going to production
typically binds all ports to IP address 127.0.0.1. You could, instead, bind it to the IP
address 0.0.0.0 (::/128 in IPv6). This special address means “bind to all IP addresses
defined to the system.” If you bind to 0.0.0.0 and have a single network card and have
only a single IP address on that card, all ports are bound to that one IP address. Well,
not quite; you actually have two IP addresses: the one we mentioned, which is typically
assigned by the Dynamic Host Configuration Protocol (DHCP) server, and 127.0.0.1,
which stands for localhost and is assigned automatically.

NOTE If an award were given for the most asked question in the JBoss forums, it
would go to: “Why can I access my web application using http://local-
host:8080, but not when using http://myhostname:8080?” Prior to JBoss
AS 4.2, the application server bound to IP address 0.0.0.0 by default; but,
starting with 4.2 and continuing into 5.0, it binds to 127.0.0.1 instead,
making the application server a little more secure out of the box. At one
point, at least a dozen messages a week appeared with this question; and,
even over a year later, there are still a few posts each week with this ques-
tion—despite the fact that this configuration change, and how to deal
with it, is clearly documented in the release notes that accompany the
JBoss AS download, and that this issue is addressed in a FAQ on the JBoss
wiki, and that there are hundreds of similar questions, all answered, on
the forum.

But, if you have virtual IP addresses (multiple IP addresses for your network card) or
multiple network cards, then using 0.0.0.0 as the IP address results in the ports being
bound to all IP addresses. Sometimes you want this; for example, you have two net-
work cards, and you want to access HTTP requests from both cards. Other times you
don’t want this; for example, you have two network cards, and you want to accept
HTTP requests on only one card because the other card is connected to a database
server and handles only database traffic. In this case, you don’t have a reason to bind
to the IP address on that second network card for HTTP requests.

 To bind the application server to a particular IP address, use the –b option to spec-
ify the address

run –b <ip-address>

where <ip-address> is the desired IP address or hostname. For example, to bind to
all IP addresses, use the following:

run –b 0.0.0.0

As another example, if the network card that accepts HTTP requests has IP ad-
dress 192.168.0.100, enter

run –b 192.168.0.100

You need to be aware of one small caveat when binding to a specific IP address, such
as 192.168.0.100: you can’t access applications via a browser on the same system by
using localhost as the hostname. For example, entering the URL

 http://localhost:8080/jmx-console

419Collocating multiple application server instances
doesn’t bring up the JMX Console. Instead, you get an error. Why? Because localhost is
IP address 127.0.0.1, and the application server doesn’t bind to that IP address. Requests
to that address fail. If the system is named myserver, with an IP address of 192.168.0.100,
you can enter either of the following URLs to access the JMX Console:

 http://myserver:8080/jmx-console
 http://192.168.0.100:8080/jmx-console

As an example, let’s assume you have configured two IP addresses: 192.168.0.100
and 192,168.0.101. To start both application servers, run these commands, each from
its own command line:

run –b 192.168.0.100 –c myconfig
run –b 192.168.0.101 –c myconfig2

Each application server binds to its own IP address. In addition, each application
server can use the same ports. For example, both can use port 8080 for HTTP requests.
There’s no conflict in this case because each port is bound to a different IP address.

 Before we look at how to stop multiple servers, let’s take a detour as we show you
how to set up virtual IP addresses on your system.
DEFINING VIRTUAL IP ADDRESSES

You can define virtual IP addresses in Windows using the Advanced TPC/IP Settings
dialogbox. To get to this dialog box, select Network Connections from the Control
Panel, right-click the desired connection (each network card will have its own connec-
tion), select the Internet Protocol (TCP/IP) item (it might be called Internet Protocol
Version 4 (TCP/IPv4) or Internet Protocol Version 6 (TCP/IPv6)) in the list of items
used by that connection, and click the Properties button. On the Internet Protocol
Properties dialog box, choose the Use The Following IP Address option, and then
click the Advanced button. On the Advanced TCP/IP Settings dialog box, you can add
additional IP addresses for the network card. We recommend that you use an IP
address on the same subnet and that you first ensure that no one else on that subnet is
using the same IP address. The progression through the various dialog boxes is illus-
trated in figure 15.1.

 Note that you can’t use DHCP to assign IP addresses if you want to define virtual IP
addresses. Before you follow these steps, you might want to run the command ipcon-
fig /all from a command prompt to get the existing IP configuration information
such as your assigned IP address, the DNS IP address, the subnet mask, and so on.
You’ll have to enter that information into the Properties dialog box if you expect your
network connection to continue working as normal.

 If you’d like to use textual hostnames instead of numerical IP addresses, you can
define hostnames in the c:\Windows\System32\drivers\etc\hosts file, as shown in list-
ing 15.5.

192.168.0.100 server1
192.168.0.101 server2

Listing 15.5 Windows hosts file showing hostnames for virtual IP addresses

420 CHAPTER 15 Going to production
You can then use the hostname, such as server1, with the -b option to the run script
in place of the IP address 192.168.0.100.

NOTE The text on configuring multiple IP address was tested on Fedora 8 and
Ubuntu 8.04. Other Linux distros might provide alternate means to con-
figure such addresses. Consult the documentation for your Linux distro
for details.

You can use several mechanisms to define virtual addresses in Linux. You can use the
ifconfig command to create a temporary virtual IP address. This address will be valid
until you reboot your system or until you restart the network service. You should first
run the command ifconfig –a to see what network interfaces are available. You’ll see
results that look like this:

>ifconfig –a
eth0 Link encap:Ethernet HWaddr 00:12:34:56:78:9A
 inet addr:192.168.0.101 Mask:255.255.255.0 ...
. . .

The text eth0 identifies an interface. You can define additional interfaces for the same
network adaptor by appending a colon and a digit to the name—for example, eth0:1
or eth0:2. To define an interface that uses the virtual IP address of 192.168.0.101, you
could enter

ifconfig eth0:1 192.168.0.101 netmask 255.255.255.0 up

Alternately, if you’re using Fedora or Red Hat Enterprise Linux you can identify per-
manent virtual IP addresses for your network controllers by providing network inter-
face configuration files in the /etc/sysconfig/network-scripts directory. This directory
already contains a file named ifcfg-eth0, which configures the eth0 interface. List-
ing 15.6 shows an example of the contents of that file.

Figure 15.1 The progression of dialog boxes needed to define virtual IP addresses in Windows.

421Collocating multiple application server instances
<Text that identifies the controller hardware>
DEVICE=eth0
BOOTPROTO=dhcp
ONBOOT=yes
HWADDR=00:12:34:56:78:9a
TYPE=Ethernet

First, you need to configure the existing interface to use a hardcoded IP address. As
on Windows, using virtual IP addresses won’t work with DHCP. Look back at the results
from running ifconfig –a; the information you need for the configuration appears
there. Listing 15.7 shows the updated ifcfg-eth0 file.

<Text that identifies the controller hardware>
DEVICE=eth0
IPADDR=192.168.0.100
NETMASK=255.255.255.0
GATEWAY=192.59.193.250
ONBOOT=yes
HWADDR=00:12:34:56:78:9a
TYPE=Ethernet

The ifcfg-eth0 file now has a hardcoded IP address. Now, copy this file as ifcfg-eth0:1
and change it as shown in listing 15.8.

<Text that identifies the controller hardware>
DEVICE=eth0:1
IPADDR=192.168.0.101
NETMASK=255.255.255.0
GATEWAY=192.59.193.250
ONBOOT=yes
TYPE=Ethernet

Note that the IP address is changed and that the HWADDR entry no longer appears. If
you retain the HWADDR entry, you might get only one IP address, typically the one
defined in the last configuration file processed. After you create this second file, you
can either reboot the system or restart the network service to register the additional
network interfaces.

 You can perform similar configuration magic on Ubuntu by editing the /etc/net-
work/interfaces file, providing similar information to what we’ve mentioned. We refer
you to the Ubuntu documentation for further details.

 If you’d like to use textual hostnames instead of numerical IP addresses, you can
define hostnames in the /etc/hosts file. The entries you need to make are the same as
given for the Windows hosts file in listing 15.3.

 Now that you know how to define multiple IP addresses and run multiple instances
of the application server, each on a different IP address, you might be wondering how
you shut the application servers down. We cover that next.

Listing 15.6 The ifconfig-eth0 file before editing it to support multiple IP addresses

Listing 15.7 The ifcfg-eth0 file after editing it to support multiple IP addresses

Listing 15.8 The ifcfg-eth0:1 file that defines an additional IP address

422 CHAPTER 15 Going to production
15.2.3 Shutting down multiple nodes

If you run each instance from a command line, type CTRL-C in each command win-
dow to bring the application server down. The application server registers a CTRL-C
handler that performs an orderly shutdown, or you can use the shutdown scripts
(shutdown.bat or shutdown.sh) to shut down each application server.

 The shutdown scripts require that you know the hostname and the JNDI port num-
ber because they use that port number to look up the MBeanServerConnection object.
For example, if you have two application server instances running on localhost using
ports 1099 and 1199 for JNDI, you can stop both by entering

shutdown –s localhost:1099 -S
shutdown –s localhost:1199 -S

As another example, if you have two application servers bound to their own IP
addresses, say 192.168.0.100 and 192.168.0.101, and both using the default JNDI port,
you can stop both by entering

shutdown –s 192.168.0.100:1099 -S
shutdown –s 192.168.0.101:1099 -S

Now that you know how to work with multiple application server instances, let’s turn
our attention to the next topic on our going-into-production list: slimming down the
application server.

15.3 Removing unwanted services
Modularity is one of the greatest features of the JBoss AS architecture. You can pick
and choose which components you require, and build a configuration containing
those pieces. The easiest way to do this is to use the JEMS Installer and pick only those
services that you need. The installer is intelligent enough to determine any dependen-
cies of your desired services and automatically installs those also. Alternately, if you’ve
installed the binary distribution, you can start with a configuration that has more than
what you need and remove the pieces that you don’t want.

 Why should you remove unneeded services? The main reason is for security. If an
unneeded service opens a port, one more entry point is available to a hacker. Another
reason is for performance. Services take up memory and processor time. Every service
is deployed and initialized, slowing down the boot process and allocating objects,
some of which aren’t deallocated until the server is shut down. Additionally, some ser-
vices occasionally wake up to perform periodic tasks, taking processor time away from
deployed applications.

 How should you go about removing unneeded services? First, choose one of the
existing configurations. The primary difference between the all and default configura-
tions is that the all configuration handles clustering and the default configuration
doesn’t. If you need clustering, start with the all configuration. If you don’t need clus-
tering, start with default. Once you’ve selected a configuration, you can remove the
files used by services you don’t require.

423Securing the server applications
 Table 15.3 lists various services that you can remove by deleting files and directo-
ries from the server/xxx/deploy and server/xxx/lib directories. There are, of course,
other services that can be removed beyond those listed here.

You might want use some of these services or applications, such as JMS and the JMX
Console, in production. If you’re going to use them, you should secure them to pre-
vent unauthorized access.

15.4 Securing the server applications
Many people prefer not to run the prepackaged applications that ship with the appli-
cation server in a production environment. Others want to be able to access the appli-
cations, but restrict that access to certain users or to users that have access to the
physical server. These applications include the JMX Console, the Web Console, and
the root web application. You can handle securing these applications in several ways,
but here are the three most common:

■ Removing the applications from the deploy directory
■ Adding security to the applications
■ Only allowing them to be accessed from the local machine

Let’s talk about how to remove the applications from the deploy directory first.

Table 15.3 Removing unneeded services

Service Delete these files/directories

Mail service server/xxx/deploy/mail-service.xml
server/xxx/lib/mail*.jar

Scheduler service server/xxx/deploy/scheduler-service.xml
server/xxx/deploy/schedule-manager-service.xml
server/xxx/lib/scheduler-plugin*.jar

Monitoring service server/xxx/deploy/monitoring-service.xml
server/xxx/lib/Jboss-monitoring.jar

Messaging (JMS) service server/xxx/deploy/messaging
server/xxx/deploy/jms-ra.rar
server/xxx/lib/jboss-messaging*.jar

Unique ID key generator server/xxx/deploy/uuid-key-generator.sar
server/xxx/lib/autonumber-plugin.jar

HTTP Invoker service server/xxx/deploy/http-invoker.sar
server/all/deploy/httpha-invoker.sar (only in the all configuration)

Home page server/xxx/deploy/ROOT.war

JMX Console server/xxx/deploy/jmx-console.war

Web Console server/xxx/deploy/management

Quartz scheduler service server/xxx/deploy/quartz-ra.rar

424 CHAPTER 15 Going to production
15.4.1 Removing the server applications

If you don’t need to run the server applications, you can remove them altogether.
Each of the console applications is deployed as a package in the deploy directory. All
you have to do is delete the correct directories and the applications are removed.
Table 15.3, in the previous section, identifies which directories you should delete to
remove these applications.

 In chapter 5, we gave you other options for changing the root context, so if you
don’t want to remove the root application, you can refer there to see your other
options.

 If you’d rather keep the server applications available for people to access, but want
to limit who can access them, you can enable security on them. Let’s discuss how.

15.4.2 Adding security to the server applications

In chapter 4, we discussed how to define security domains, and in chapter 6, we dis-
cussed how to secure web applications and bind them to security domains. These chap-
ters should give you enough background to add security to the console applications.

 One thing to note is that the Web Console and the JMX Console have already done
some of the legwork for you as far as enabling security. If you look in the WEB-INF
directory under both of these applications, you’ll see that they already have jboss-
web.xml files defined with security domain references. But, because JBoss AS has secu-
rity disabled by default, these security domain references are commented out. You
should enable them to secure the server applications.

 The security domains that these references point to (when uncommented) are
already defined in the server’s server/xxx/conf/login-config.xml file. In this file,
you’ll find both a jmx-console and a web-console security domain defined. They’re
both set up to use the UsersRolesLoginModule. The jmx-console security domain
points to security data files in the server/xxx/conf/props directory. The web-console
points to the security data files in the Web Console’s WEB-INF/classes directory. The
Web Console WAR package can be found at server/xxx/deploy/management/con-
sole-mgr.sar/web-console.war.

 Aside from enabling the security domain reference in the jboss-web.xml file, you
should enable the security restrictions in each application’s web.xml file. The security
restrictions are already available in these files also, but again, they’re commented out.
You can uncomment the security-constraint block at the bottom of each file.

15.4.3 Limiting access to the local machine

In chapter 5, we showed you how to create virtual hosts to which you could bind appli-
cations. You can create a virtual host that binds to the loopback alias available on
many OS’s. A loopback alias is a self-referencing name an OS defines that can be
accessed only from the machine on which the OS is running.

 Creating a virtual host for the loopback alias and binding an application to it
allows you to limit access to the application to loopback traffic only, allowing you to

425Changing the default database
access the application when you are physically accessing the machine, but not from
remote machines. Restricting access in this way is useful for things such as the man-
agement console; you wouldn’t want external users to be able to access this service,
but you might want it running on the box so that you can monitor the system while
in production.

 If you want to do this, you set up a virtual host in Tomcat’s server.xml file that looks
something like this:

<Host name="loopback" autoDeploy="false"
 deployOnStartup="false" deployXML="false">
</Host>

You’ll also have to set the useIPVHosts attribute to true on the connector that you’re
using (as discussed in chapter 5).Then, point your application to this virtual host by
adding the following in the application’s WEB-INF/jboss-web.xml file:

<jboss-web>
 <virtual-host>loopback</virtual-host>
</jboss-web>

Another common thing that you’ll do when you go to production is change the
default database configured for the server. Let’s look at how to do this.

15.5 Changing the default database
The application server requires a database for a variety of the services that it provides.
For this purpose, it comes with the Hypersonic SQL database (HSQLDB) which is an in-
memory, pure Java database. Although Hypersonic is an acceptable database for devel-
opment purposes, you should replace it before going into production. And, because it’s
so simple to replace, if you’re comfortable using another database such as MySQL or
PostgreSQL, or if your application will make use of features of a specific database such
as Oracle, you might consider replacing Hypersonic even during development.

 Switching from Hypersonic to another database requires several steps. First, you
have to create a database. Because this involves database-specific steps, we refer you to
the documentation for your database for performing this step. When you do this, you
should record the database name, user id, and password because you’ll need these in
the next step.

 Second, you need to create a data source descriptor file, *-ds.xml. You can have all
services and applications use the same database or configure each one to use a differ-
ent database. Declare the data sources you need and configure the applications and
services accordingly.

 Third, you need to change the configuration files for all applications that use
Hypersonic to use the new database. There are two ways to accomplish this. First,
when you defined the data source in the previous step, you could’ve named the new
data source DefaultDS. If you do that, all services that used the Hypersonic database
now use the new database because all application and services refer to a database via
the data source JNDI name.

426 CHAPTER 15 Going to production
 The second way to get the services to use the new data source is to change their
configuration files to reference the new data source. Table 15.4 lists the services that
use the DefaultDS data source and the configuration files that you have to change to
use a different data source.

Because the configuration files in the application server tend to change as new tech-
nologies come along and as the server is modified, you should do a text search on
DefaultDS to locate all occurrences that you need to change.

 Also, remove the server/xxx/deploy/hsqldb-ds.xml file. This step is crucial if, in
the previous step, you named the new data source DefaultDS. But even if you went
with a different name, we still recommend you remove this file so that the Hypersonic
database isn’t initialized. Finally, you also remove the Hypersonic JAR files, server/
xxx/lib/hsqldb*.jar.

 For most of the services listed in table 15.4, following these steps is sufficient. But
a few services and applications require more changes. We described how to config-
ure the messaging service to use another database in chapter 8, “JBoss Messaging”
(section 8.5.1). This leaves one more service that needs special attention: the EJB3
timer service.

15.5.1 Configuring the EJB3 timer service

The EJB3 timer service uses the Quartz job scheduler from Open Symphony. The
implementation of Quartz provided with JBoss AS assumes that Hypersonic will be used
as the database, but the Quartz job scheduler was designed to be used with a variety of

Table 15.4 Services that use the DefaultDS datasource

Service Configuration file

Login modules server/xxx/conf/login-config.xml

Container-Managed Persistence (EJB 2.x) server/xxx/conf/standardjbosscmp-jdbc.xml

Timer service (EJB 2.x) server/xxx/deploy/ejb2-timer-service.

Timer service (EJB 3) server/xxx/deploy/ejb3-timer-service.xml

Schedule manager service server/xxx/deploy/schedule-manager-service.xml

Messaging service server/xxx/deploy/messaging/hsqldb-persistence-service.xml
server/xxx/deploy/messaging/messaging-jboss-beans.xml

Universal Description, Discovery, and
Integration (UDDI) service

server/xxx/deploy/juddi-service.sar/juddi.war/WEB-INF/jboss-web.xml

server/xxx/deploy/juddi-service.sar/META-INF/jboss-service.xml

Simple Network Management Protocol
(SNMP) Adaptor service

server/xxx/deploy/snmp-adaptor.sar/attributes.xml

Universally Unique ID (UUID) Key Genera-
tor service

server/xxx/deploy/uuid-key-generator.sar/META-INF/jboss-service.xml

427Starting the application server as a service
databases. So the task then becomes applying the necessary Quartz changes to the exist-
ing EJB3 timer service.

 The first thing you’ll need to do is download the Quartz source file that corresponds
to the version provided by JBoss AS. You can determine the Quartz version by examining
the META-INF/Manifest.mf file located in the server/xxx/lib/quartz.jar file.

 With the Quartz source code at hand, you need to change two things in the server/
xxx/deploy/ejb3-timer-server.xml file.

 First, the ejb3-timer-server.xml file contains a list of Quartz properties. You’re inter-
ested in this property:

org.quartz.jobStore.driverDelegateClass=

➥ org.quartz.impl.jdbcjobstore.HSQLDBDelegate

You need to change the delegate class to match the one for your database. The valid
delegates can be found in the src/java/org/quartz/impl/jdbcjobstore directory of
the Quartz source. For example, use the PostgreSQLDelegate class for a PostgreSQL
database. If there’s no delegate specific to your database, as is the case for MySQL, use
the StdJDBCDelegate class. For example, for MySQL this delegate property would be

org.quartz.jobStore.driverDelegateClass=

➥ org.quartz.impl.jdbcjobstore.StdJDBCDelegate

The second change is more complicated. The SqlProperties attribute in the ejb3-
timer-server.xml file contains a list of SQL statements used to create and initialize the
tables in the database. You need to replace these SQL statements with the ones for
your database. You can find the correct statements in the Quartz sources in the
docs/dbTables directory. For example, use the tables_postgres.sql file for a Postgre-
SQL database.

 When replacing the SQL statements, leave the CREATE_* property name on the
line. For example, the property to create the job details table would look like

CREATE_TABLE_JOB_DETAILS = CREATE TABLE qrtz_job_details(...);

where the CREATE TABLE qrtz_job_details(...); text comes from the tables_*.sql
file for your database.

 For MySQL users, note that the tables_mysql.sql file uses uppercase letters for the
table names. If you’re running MySQL on Unix/Linux, make sure you make that
change because MySQL table names are case sensitive on those platforms.

 With these changes made to the EJB3 timer service, along with the other changes
mentioned earlier in this section, the application server is now using a database other
than Hypersonic.

15.6 Starting the application server as a service
In chapter 1, “Vote for JBoss,” we showed you how to start the application server using
the run scripts provided by the application server. Although this is sufficient for devel-
opment work, in a production environment, you want the application server to come up
at the same time the system is started. The system administrator is bound to give you a

428 CHAPTER 15 Going to production
weird look if you tell her that the only way to get the application server running is to first
log into the system, open a command line, and then run an application server–specific
script. But never fear; with a little bit of configuration magic, the application server can
be established as a system service that comes up automatically when the system is booted.
Additionally, the system administrator can bring the application server up or down using
the same system tools she currently uses to control other services. Let’s look at how to
do this for Windows and then for Linux after that. Note to our Linux readers: You’ll
still want to read about setting up a Windows service because we cover JBoss Native in
that section.

15.6.1 Registering a service in Windows

Windows defines a specific API that must be implemented by an application that
wishes to run as a service. Unfortunately, none of the Java executables implement that
API. Fortunately, that fact isn’t a problem because Java SE defines a standard API, the
Java Native Interface (JNI), that establishes how Java code and C/C++ code interact.
You’re probably familiar with using JNI to access C functions from Java code, but you
can also use JNI to enable C applications to host the JVM.

 In fact, this is exactly how the various Java executables work. If you look in the JDK
bin directory, you’ll notice that all the executables are fairly small and are all almost
the exact same size. These are all small C programs that take command-line parame-
ters, load the JVM library (jvm.dll or jvm.so), and then call specific JNI functions to
start the Java program. If you want to see this in action, set the _JAVA_LOADER_DEBUG
environment variable (any value will do) and then run a Java application. You’ll see
output from the executable as it performs the previously mentioned steps. And
another piece of trivia: All the Java executables originate from the same source code;
compile-time options determine the slight variations used to create each executable.

 All that’s required to run a Java application as a Windows service is to provide a
simple executable that follows the Windows service API specification and uses the JNI
specification, or some other mechanism, to launch the JVM and the Java application.
Because this is a fairly generic task, you probably expect that someone has done this
already. And they have. The JBoss team provides such a tool as part of the JBoss Native
package, which is part of the JBoss Web project.
USING THE JBOSS NATIVE WINDOWS SERVICE

The JBoss Native download is available at http://www.jboss.org/jbossweb/down-
loads/. Note that there are several variants, each for a specific OS and CPU type.
Make sure you get the one that matches your platform. For example, if you’re run-
ning the 64-bit version of Windows Server 2003 on an AMD or Intel EM64T CPU,
download the package described as Windows 64 AMD64/EM64T Package.

 Then unzip the file into your JBOSS _HOME directory. This action adds several files
and a directory to the bin directory. Congratulations! You’ve now installed the Apache
Portable Runtime files, which will improve the performance of HTTP/HTTPS requests;
those requests can now be handled in native code. In addition, you’ll no longer see
this warning during startup:

http://www.jboss.org/jbossweb/downloads/
http://www.jboss.org/jbossweb/downloads/

429Starting the application server as a service
INFO [AprLifecycleListener] The Apache Tomcat Native
library which allows optimal performance in production environments
was not found on the java .library.path: .;C:\WINDOWS\system32;...

Note to our Linux readers: You’re now excused; you may skip down to the section on
setting up the Linux service.

 The downloaded files in the bin directory include a readme file that describes how
to install the service. It’s simple—run the following command from the bin directory:

service install

This command installs a service whose short name is JBAS50SVC, and long name is
JBoss Application Server 5.0. The service is set up to start automatically when the sys-
tem is booted. You can use the typical Windows mechanisms, such as the Services con-
trol panel, the net command and the Get-Service cmdlet in the Windows PowerShell,
to manage the service. For example, to start the service using the net command, enter
the following at a command line:

net start jbas50svc

To stop the service using the Get-Service cmdlet, open a PowerShell window and enter

(get-service jbas50svc).stop()

This is all fine and good, but what if you want to run multiple application servers as
services? Glad you asked.

15.6.2 Registering multiple services

To understand how to set up multiple applica-
tion servers as services, you must first under-
stand how JBoss Native handles running the
application server as a service. It’s very simple.
An executable named jbosssvc.exe handles the
requirements of the Windows service API. This
executable, when asked to start the service,
executes the service.bat file, which runs the
run.bat file, which runs the application server.
This sequence is illustrated in figure 15.2.

 This architecture gives you a lot of leeway in how to set up multiple services. We
describe one such approach; you are, of course, free to try others.

 We stated that the jbosssvc.exe executable runs the service.bat script. It knows to
do that by the following entry in the service.bat file, which is part of the service instal-
lation process:

:cmdInstall
jbosssvc.exe -imwdc %SVCNAME% "%DIRNAME%" "%SVCDISP%"

➥ "%SVCDESC%" service.bat
if not errorlevel 0 goto errExplain
echo Service %SVCDISP% installed
goto cmdEnd

Tool

W
indow

s
S
ervice

M
anager

jbosssvc.exe

service.bat

run.bat

java ... org.jboss.Main

start
service

executes

executes

executes

executes

Figure 15.2 To start the application server
service, the jbosssvc.exe excutable runs the
service.bat script, which runs the run.bat
script, which runs the application server.

430 CHAPTER 15 Going to production
That last parameter passed to jbosssvc.exe is the batch file to run. The service.bat
script knows to start the run.bat script due to the following lines in service.bat:

:cmdStart
REM Executed on service start
. . .
call run.bat < .r.lock >>run.log 2>&1
. . .
goto cmdEnd

And service.bat script knows to use the shutdown.bat script to stop the service due to
the following lines:

:cmdStop
REM Executed on service stop
. . .
call shutdown -S < .s.lock >>shutdown.log 2>&1
. . .
goto cmdEnd

There’s also a restart option in service.bat, but we leave you to examine that. You now
have enough information to determine how to configure multiple services. For the
example, you’ll define two services: Portal and Accounting.

 The first step is to define to application server configurations. We covered this
topic earlier in section 15.2. For our example, we assume that you’ve created two con-
figurations named portal (%JBOSS_HOME%\server\portal) and accounting (%JBOSS
_HOME%\server\accounting) and that you’ve resolved the port binding issues. Make
sure that you can successfully run these configurations manually before setting them
up as services.

 Next, make two copies of service.bat as service_portal.bat and service_accounting.
bat. Listing 15.9 shows the changes you need to make to service_accounting.bat; make
similar changes to service_portal.bat.

...
set SVCNAME=ACCOUNTING
set SVCDISP=JBoss AS – Accounting app
set SVCDESC=Runs JBoss AS with the accounting app
set JBOSSOPT=-c accounting –b YYY
set JBOSSSTOP=-s XXX
set JAVA_HOME=C:\apps\jdk1.5.0_16
...
:cmdInstall
jbosssvc.exe -imwdc %SVCNAME% "%DIRNAME%" "%SVCDISP%"

➥ "%SVCDESC%" service_accounting.bat
...
:cmdStart
call run.bat %JBOSSOPT% >run_acct.log 2>>&1
...
:cmdStop
call shutdown %JBOSSSTOP% -S >shutdown_acct.log 2>>&1
...

Listing 15.9 Modifications to service_accounting.bat for the accounting service

B
C

D
E

F
G

H

I

J

431Starting the application server as a service
:cmdRestart
call shutdown %JBOSSSTOP% -S >shutdown_acct.log 2>>&1
call run.bat %JBOSSSTOP% >>run_acct.log 2>>&1
...

The first three changes provide the service short name B, long name C, and
description D. The values of the variables are arbitrary, so you can use any values
you like. Be careful to use a valid name for the service and make sure that it isn’t the
same as an existing service. The next three lines are new. The application server is
started and stopped in two locations, so it makes sense to define the start E and
stop F options only once. In this example, the binding address (-b YYY) and the
server URL (-S XXX) are undefined; you can set them based on your environment.
The JAVA_HOME variable G is declared to ensure that the application server is started
with the desired JVM. Setting JAVA_HOME isn’t necessary if it’s already defined among
the system environment variables.

 The command that installs the service identifies the service_accounting.bat file as
the script to run to manage the service H. The commands to start I and stop J the
application server use the environment variables defined earlier. Note that they also
redirect standard output and error to log files specific to the service.

 When both of the services have been installed, you can see them in the Services
control panel, as illustrated in figure 15.3.

Note that the services initially aren’t running, but they’re configured with the auto-
matic startup type so that they’ll start when the system is booted. You can start them
now if you like. You’ve probably noticed that the services are using the local system
account, which isn’t a good idea if you want to keep your system secure. Let’s look at
how to change that next.
USING A NON-SYSTEM ACCOUNT FOR THE SERVICE

The jbosssvc.exe executable registers the service to run with the local system account.
Because that account has various special privileges, you should change the service to
run with a different account. Changing the account is fairly simple to do.

J
I

Figure 15.3 Viewing the example services in the Windows Services control panel applet

432 CHAPTER 15 Going to production
 First, create a new account. Don’t
add this account to the administra-
tor’s group. In addition, you might
want to set the account so that the
password never expires; otherwise,
you’ll notice that the service period-
ically stops working because it’s using
an expired password.

 Next, change the service to use the
new account. In the Services control
panel, right-click the service and se-
lect Properties. Change the account
in the Log On tab of the Properties
dialog box. Figure 15.4 shows using
an account named portal to run the
JBoss Portal 2.6.1 service.

 Finally, ensure that the account
used to run the service has access to
the JBOSS_HOME directory and its
subdirectories. You can also change
the access control to the other
directories on the system to prevent
access by the indicated account.

 The next time you start the ser-
vice, it runs under the new account;
you can verify this by checking the
jbosssvc.exe and its corresponding
java.exe executable in Task Man-
ager, as shown in figure 15.5. You
might have to change the columns
that are visible to see the username
for each process. Note that there
could be several java.exe processes running, many running under other accounts.

 That covers setting up a service on Windows. Now, let’s look at doing the same for
Linux.

15.6.3 Registering a service in Linux

The application server comes with scripts that you can use to easily register your own
service within Linux. For our example, we show you how to set up the service on Red
Hat Fedora, but the same principles should apply equally to most Linux variants.

 Services are defined in Linux by adding a script file to the /etc/init.d directory.
These scripts must support commands to start, stop, and restart the service. The

Figure 15.4 Setting the example portal service
to use the restricted account named portal

Figure 15.5 Viewing the portal service executa-
bles in Task Manager. The jbosssvc.exe and
java.exe processes running under the portal
account correspond to the portal service.

433Starting the application server as a service
application server comes with three such scripts, named jboss_init_*.sh, in the bin
directory. Because you’re working with Fedora, use the jboss_init_redhat.sh script.

 First, you edit the settings at the start of the script to reflect your environment. List-
ing 15.10 shows the changes you have to make.

JBOSS_HOME=${JBOSS_HOME:-"/opt/jboss-5.0.0.GA"}
JBOSS_USER=${JBOSS_USER:-"jboss"}
JAVAPTH=${JAVAPTH:-"/usr/java/jdk1.5.0_16/bin"}
JBOSS_CONF=${JBOSS_CONF:-"default"}
JBOSS_HOST=${JBOSS_HOST:-"0.0.0.0"}
JBOSS_CONSOLE=${JBOSS_HOME:-"$JBOSS_HOME/bin/console.log"}

You need to change the path where JBoss AS is installed B, the account used to run
JBoss AS C, and the location of the Java binary D. The –c E and –b F option values
supply the server configuration name and binding address. The last line G is one that
you need to add to the file; it identifies the file that holds the log output that typically
shows up in the command window when running the application server from a com-
mand line.

 Additionally, if you later want to set this service up to start automatically when the
system boots, you have to add the following comment lines to the script:

chkconfig: 345 90 10
description: Runs the JBoss Application Server
processname: jboss

These lines are used by the chkconfig tool to identify the service and define the run
level at which the script is executed. The concept of run levels is a little beyond the
scope of this book, but any decent book on Linux administration can explain that
topic. We discuss the chkconfig tool later.

 Next, create a new user, named jboss to match the above settings. Don’t forget to
assign a password to the account. Even though the password isn’t used to start the ser-
vice, having a password prevents unauthorized users from gaining access to the system
using that account.

 Then, change the security on the files in the application server directory so that
the new user has full access rights, both to run the scripts in the bin directory and to
update and create files in the server directories. One way to accomplish this is to
change the owner of all the files to the new user, like this (you might need to log in as
root to do this if you don’t own the files):

chown –R jboss /opt/jboss-5.0.0.GA

Once this is done, sign in as the new user, go to the bin directory, and run the applica-
tion server. This step is more of a sanity check that this new account can be used to
run the server. If it isn’t successful, recheck the security permissions or fix any errors
that occur. When you have the application server running, stop it; you’ll restart it later
as a service.

Listing 15.10 Changing settings in the jboss_init_redhat.sh file

B
C

D
E

F
G

434 CHAPTER 15 Going to production
 Next, copy the script to the /etc/init.d directory, renaming the script to simply
jboss (or any other name you choose), mark it as executable, and register it using the
chkconfig tool (you should be logged in as root). Here are the commands for these
three steps:

cp /opt/jboss-5.0.0.GA/bin/jboss_init_redhat.sh /etc/init.d/jboss
chmod u+x /etc/init.d/jboss
chkconfig –add jboss

Finally, you can start the service. Enter the following (you should be logged in as root):

service jboss start

You can use the tail utility to monitor the output in the console.log file.

tail –f /opt/jboss-5.0.0.GA/bin/console.log

At this point, the service is registered to the system and starts automatically when the
system restarts.

 But, what if you want to run multiple instances of the application server? Easy.
Make a copy of the jboss_init_*.sh file, setting the values mentioned in listing 15.8 for
the second server, follow all the rest of the steps mentioned earlier, and copy the script
to /etc/init.d as another name such as jboss2. You now have a second application
server running as a service.

 As we mentioned earlier, the example is specific to Fedora Core, but should apply
equally well to other variants of Linux or Unix.

15.7 Configuring JSP compilation
By default, the JBoss Web Server doesn’t compile a JSP until the first time it’s accessed.
After that, it checks whether the underlying JSP has changed, and recompiles it again.
These are adequate settings for development purposes; but, in a production environ-
ment, these settings cause problems. First, by not compiling JSPs until the first time
they’re accessed in a production system, the first person who accesses the JSP has the
inconvenience of waiting for it to compile. In many production environments, the
best choice is to turn the lazy JSP compiling feature off all together.

 The second problem with the default JSP compiler settings is that every JSP request
must check whether the file has been updated in order to recompile when a JSP has
been modified. Checking for file updates on each request can degrade performance
in a production environment with a high load.

 JSP compiling and execution is handled by a Java servlet deployed in JBoss Web
Server by default when it starts up. This servlet, called the JspServlet, is configured in
the global server/xxx/deployers/jbossweb.deployer/web.xml file.

 The compiling configuration is done by specifying initial parameters for the serv-
let using <init-param> element blocks. The JspServlet is well documented in the file,
so you can go in there and read about the other configuration options that you can
make. As far as the compiling options go, you can configure three pertinent parame-
ters. Table 15.5 shows you these options; the descriptions come straight from this file.

435Summary
You might have noticed that these options don’t provide you with a way to precompile
JSPs. You can do this in one of two ways. If you have only a few JSPs that you want to
precompile, you can declare your JSP in your application’s web.xml file and specify the
load-on-startup setting.

<servlet>
 <servlet-name>login</servlet-name>
 <jsp-file>/login.jsp</jsp-file>
 <load-on-startup>1</load-on-startup>
</servlet>

If you have many JSPs in your application and you want to precompile all of them, you
should use a command-line compiler. One such compiler is JSPC, which ships with
JBoss Web Server. JSPC takes your JSP files and converts them into Java files. You can
then use the regular Java compiler to compile the Java files. Build tools, such as Ant or
Maven, simplify this process by providing build targets for you. Refer to your build
tool documentation to find out more.

15.8 Summary
This chapter covered a wide range of configuration topics, but all of them were aimed
at moving your application server from a development environment to a production
environment. As a recap, we provide the various steps in the going-to-production
checklist as, just that, a checklist:

1 Select the proper platform and JVM on which to run the application server.
2 Select a JBoss AS version, keeping in mind if you want support with that.
3 Determine if you need to run multiple instances on a single box, and if so, then

creating multiple configurations and either binding the ports to unique port
numbers or binding to multiple IP addresses.

4 Remove services that you don’t need.

Table 15.5 The options available to configure JSP precompiling

Parameter Description

development Is Jasper used in development mode? If true, the frequency at
which JSPs are checked for modification can be specified via the
modificationTestInterval parameter. Default is true.

checkInterval If development is false and checkInterval is greater
than 0, background compilations are enabled. checkInterval
is the time in seconds between checks to see if a JSP page needs
to be recompiled. The default is 0.

modificationTestInterval Causes a JSP (and its dependent files) to not be checked for mod-
ification during the specified time interval (in seconds) from the
last time the JSP was checked for modification. A value of 0
causes the JSP to be checked on every access. Used in develop-
ment mode only. The default value is 4.

436 CHAPTER 15 Going to production
5 Secure the deployed applications and services, including the ones that come
with the application server.

6 Remove the Hypersonic database, replacing it with an enterprise-class database.
7 Configure the application server to start as a service.
8 Configure the application server to precompile JSPs.

Congratulations! You now know everything necessary to roll your application server
into production.

 Over the course of this book, you’ve been introduced to a wide variety of topics
concerning the JBoss AS and many of the technologies that it contains or that sur-
round it. You should now be comfortable with performing such tasks as deploying
applications, securing those applications, and various other configuration tasks. We
encourage you to continue your learning by reading the documentation provided
with the various JBoss technologies. With the background provided by the book, you
should now find that documentation easier to comprehend. And finally, we hope that
now you too will vote for JBoss!

15.9 Resources
Precompiling JSPs using ANT—http://scriptlandia.blogspot.com/2006/04/how-to-pre-compile-

jsp-pages-for.html
JBoss Native website—http://www.jboss.org/jbossweb/downloads/jboss-native/
Quartz job scheduler—http://www.opensymphony.com/quartz/

http://scriptlandia.blogspot.com/2006/04/how-to-pre-compile-jsp-pages-for.html
http://scriptlandia.blogspot.com/2006/04/how-to-pre-compile-jsp-pages-for.html
http://www.jboss.org/jbossweb/downloads/jboss-native/
http://www.opensymphony.com/quartz/

appendix A:
JNDI namespaces

As we discussed in chapter 7, EJBs are automatically bound into a JNDI server when
they’re deployed to the application server. The JBoss JNDI naming server is called
JBossNS. Every application server binds beans into naming contexts of the applica-
tion server’s own choice. For example, as you saw in chapter 7, if you deploy an EAR
file, JBoss will bind the beans into a context relative to the EAR file name. JBoss uses
this convention, but other application servers may or may not use different strate-
gies. In this appendix, we’ll explore how JBoss does JNDI binding and how to gener-
ically bind your applications in JNDI, making them more portable across
application servers.

A.1 Understanding the enterprise naming context
Some problems arise when you write code that references EJBs bound to the JNDI
context that a particular vendor chooses. First, if you decide to migrate an applica-
tion from one application server to another, your code has to be modified. For
example, if you’re running on WebLogic and decide to migrate to JBoss, you have
to update all your JNDI references in your code to use the JBoss convention rather

This appendix covers
■ Understanding the Enterprise Naming Context
■ Examining common JNDI namespaces
437

438 APPENDIX A JNDI namespaces
than the WebLogic convention. This task might not be bad, but some people have
JNDI references hardcoded throughout their code, making it a little more difficult.

 Another problem comes up when your application must be supported on multiple
application servers. Many vendor product developers have this requirement. It
doesn’t make sense to keep separate versions of your code base for each application
server when the only difference is the JNDI naming convention.

 A third problem arises when you change the name of a bean and are then forced
to change the reference to that bean in your code. For example, imagine that you
have a session bean that reads data from a database, and you want to swap it out for a
bean that reads the same data from a different database or, perhaps, a web service. It
would be nice if your code could use a logical name to reference the bean rather than
referencing it by its actual name.

 The Java EE specification provides a mechanism for logically referencing beans,
EJBs, and resources using the Environment Naming Context (ENC). You’ll also hear the
ENC referred to as the component local namespace. The ENC is a private JNDI
namespace available to EJBs. This private (or local) namespace is standard across all
Java EE application servers and is mapped to the application server’s proprietary (or
global) namespace using the application server’s proprietary deployment descriptor
file, which is META-INF/jboss.xml in the case of JBoss.

 Figure A.1 shows you how the ENC maps a local component name to the global
component name.

 In this figure a servlet is trying to access an EJB proxy through the ENC. The servlet
looks up the EJB’s proxy object using a local name defined in the web application’s
WEB-INF/web.xml file. We know the name is local because it starts with java:/comp/
env, which is the standard prefix defined in the Java EE specification. This lookup

Figure A.1 Web applications can access resources by their local JNDI names, which are mapped to
their global JNDI names.

439Examining the JNDI namespaces
causes a JNDI lookup to occur in JBossNS’s global namespace. The global JNDI name
for the EJB is defined in the WEB-INF/jboss-web.xml file. When the EJB is deployed,
JBossNS creates a mapping between the local and the global name. JBossNS uses that
mapping to locate the global name and then the proxy so that it can send it back to
the servlet.

 You can also do the same thing for a data source. For example, each application
server vendor may bind its default data source to a different part of its global
namespace. But, you can have your code and your standard deployment descriptors
refer to the component local name. In a web application, you might configure your
web.xml file to point to the local name java:comp/env/jdbc/DataSourceName using
the following configuration:

<web-app>
 ...
 <resource-ref>
 <res-ref-name>jdbc/DataSourceName</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
 ...
</web-app>

The local name is referenced using the res-ref-name element. The java:comp/env
portion of the name is implied and doesn’t need to be included. Then, you might
map this local name to JBoss AS’s default data source, using the default data source’s
global name, java:DefaultDS. This configuration would go in your WEB-INF/jboss-
web.xml file.

<jboss-web>
 ...
 <resource-ref>
 <res-ref-name>jdbc/DataSourceName</res-ref-name>
 <jndi-name>java:DefaultDS</jndi-name>
 </resource-ref>
 ...
<jboss-web>

The res-ref-name element points to the local name, and the jndi-name element
defines the mapping to the global name for the data source.

A.2 Examining the JNDI namespaces
The namespaces in JNDI fall into two main categories: global or local. Access to the
local namespace (also called the java: namespace) is limited to the local JBoss
instance. Access to the global namespace is open to remote clients as well. Table A.1
shows you some examples of what can be found in these namespaces.

 Notice that the java:/comp/env namespace—the ENC—is under the local
namespace (java:). Access to the ENC is not only restricted to local access within the
JBoss instance, but is also limited to the EJB for which it’s defined.

440 APPENDIX A JNDI namespaces
You can see what’s bound in JNDI by going to the JMX Console (http://local-
host:8080/jmx-console/) and clicking the service=JNDIView link under the jboss
domain. Then click the invoke button for the list operation; this will forward you to
a screen that looks like figure A.2.

Table A.1 Examples of contexts and resources that are bound in the global and local namespaces
 in JBossNS

Global namespace Description

ConnectionFactory The context in which the JMS client connection manager gets bound

Queue The context in which JMS queues get bound

Topic The context in which JMS topics get bound

Jmx The context in which JMX protocol adapters get bound

java:/comp/env The context in which components (for example, session EJBs) will
bind their proxies

java:/jaas The context in which security domains get bound

java:DefaultDS A reference to the default data source

Figure A.2 The JNDI view in the JMX console shows you the various components
bound in the local and global namespaces.

441Examining the JNDI namespaces
This view will show you everything in the local namespace and the global namespace
(not seen in the screenshot). It will also break down the contents of each component
bound into the ENC. Figure A.2 shows two beans bound into the ENC.

 Understanding what gets bound into JNDI and how to look up objects in JNDI is
helpful when configuring applications. Many questions on the JBoss forums are about
or related to JNDI, so it would be well worth your time to dig through the JNDI view
and learn what’s there.

appendix B:
Change is inevitable

Things do not change; we change.

 —Henry David Thoreau

Thoreau was wrong, mainly because he never knew of any open source Java proj-
ects! To give you a little history, we finished writing the book in August of 2007. At
that time, JBossAS 5.0.0 was at Beta 2 and GA was scheduled for that December. So
we put the book on the shelf and awaited CR1. It was a long wait. As Beta 3, Beta 4,
and then CR1 came out, we scrambled to update the book and source code to
reflect the changes in each release. Then CR2 came out near the end of making

This appendix covers
■ Jopr and the new administration console
■ JBoss Portal 2.7.0
■ The default/lib directory
■ The web configuration
■ The profile service repository
■ The jboss.server.log.threshold system property
442

443Jopr and Embedded Jopr
text changes based on CR1, so we revalidated on CR2 and started sending chapters to
the typesetter confident that the content would match GA very well. Considering the
changes we saw in CR2, and with assurances from key members of the JBossAS develop-
ment team that there would be no more changes, this seemed a reasonable assump-
tion. There were few configuration changes in CR2; instead, it mostly fixed things that
were broken in earlier versions, such as the port binding service that had been broken
since Beta 1.

 But soon we heard about other changes such as the release of the long-awaited
Administration Console and the creation of the common/lib directory. Unfortu-
nately, the chapters had already been typeset—hence, this appendix was born.

 This appendix contains changes that came after CR2 and before the book went to
the printer. Any changes after that will appear on the book’s website. So without fur-
ther ado, let’s look at what’s changed.

B.1 Jopr and Embedded Jopr
One of the important announcements during the JBoss World conference in Orlando
in February 2008 was that an open source version of JBoss ON would be released, and
that a subset of the functionality of that product would be used to create an Adminis-
tration Console for JBoss AS. In October of 2008, the JBoss team made available
Jopr—which is the open source version of JBoss ON—and Embedded Jopr—which is
the Administration Console.

 Jopr enables management of an entire datacenter, and can be used to manage and
monitor a number of services running on each host, services such as databases, JBoss
AS, Tomcat, operating systems, and so on. In addition, you can use Jopr to administer
any instance of JBoss AS running in your data center, doing such things as deploying
applications and defining data sources. Jopr is typically installed on a separate box,
comes with its own application server, and connects to a database to store its data. You
can use the JBoss ON documentation for Jopr; that documentation describes installa-
tion, configuration and usage, so we won’t delve into Jopr in this book.

 Embedded Jopr, on the other hand, is a web application that runs with a copy of
JBoss AS, and can administer only that application server. You can use it to monitor the
application server; but, unlike Jopr which provides graphs for performance data,
Embedded Jopr provides only text. You can also use it to manage applications, data
sources, message destinations, and other things.

 In this appendix, we focus on Embedded Jopr, giving you a quick tour through its
capabilities.

B.1.1 Installing and configuring Embedded Jopr

Installing Embedded Jopr is simple. First, download and unzip the zip file—it con-
tains the admin-console.war file. You can copy the WAR file to the server/xxx/deploy
directory, but we recommend unpacking the WAR file and deploying it as an
exploded directory.

444 APPENDIX B Change is inevitable
NOTE We aren’t sure of the name for this WAR file. As of this writing, the WAR file
in the downloaded zip file is named embedded-jopr.war. But this WAR file
works only with JBoss AS 4.2.x. On the other hand, the source obtained from
the Subversion repository builds both 4.2.x and 5.0 variations of Embedded
Jopr and names both WAR files admin-console.war, which seems like a more
reasonable name; that’s the name we use in this appendix.

Embedded Jopr uses the jmx-console security domain for access control. This security
domain uses the server/xxx/conf/props/jmx-console-roles.xml and jmx-console-
users.xml files to manage the users and the roles. In JBoss AS, these files are set up to
accept a username and password of admin/admin. In JBoss EAP, these files by default
don’t contain any valid roles—the admin user is commented out. If you’re using JBoss
EAP, make sure to set up valid usernames. For example, you could uncomment the
admin user.

 That’s all that there is to installation. Start the app server, enter the URL http://
localhost:8080/admin-console into your browser, provide the username and password
to log in, and you’ll see the page shown in figure B.1.

 The top of the page is a header that identifies the Admin Console and contains a
logout link. The left side of the page contains a tree view showing the components

Figure B.1 The home page of the Amin Console

445Jopr and Embedded Jopr
that can be managed. The right side of the page contains details about the compo-
nent selected in the tree view.

 The top of the detail panel contains breadcrumbs that identify your location
within the component hierarchy. It also has four tabs used to group information
about, or capabilities of, the component. Let’s explore a few of the components,
examining the tabs as we do so.
UNDERSTANDING THE SUMMARY TAB

The Summary tab provides information about the component. The Summary tab is
always available, unlike the other tabs that, although they’re always displayed, aren’t
always available. In figure B.1, the Summary tab is currently selected, the Configura-
tion tab is unavailable, and the Metrics and Control tabs are available.

 For a component that has no subcomponents, the Summary tab displays general
information about the component, as you can see in the home page shown in figure
B.1, which shows information about the host running the application server.

 For a component that has subcomponents, the Summary tab displays a table of the
subcomponents, as you can see in figure B.2, where the Datasource component is
selected.

 You can use the Delete button to remove the subcomponent. For a data source, if you
click that button, the *-ds.xml file is removed from the deploy directory. You can use the
Add A New Resource button to create a new subcomponent. For a data source, you’re
presented with a form into which you can enter the data source configuration informa-
tion. This information is stored into a *-ds.xml file that’s placed into the deploy directory.
Similarly, if you create a new message destination, a *-destination-service.xml file for the

Figure B.2 The Summary tab for the data source component shows a table of data sources.

446 APPENDIX B Change is inevitable
destination appears in the deploy directory. For a web application or enterprise appli-
cation, the Add A New Resource button takes you to a form where you can specify the
application’s archive filename and indicate if the application should be deployed as an
exploded directory. The application archive file is uploaded to the application server
and deployed in the deploy directory. You always use the buttons on the Summary tab
to create or delete a component.
UNDERSTANDING THE CONFIGURATION TAB

The Configuration tab displays a form you can use to modify the properties of the
component. This tab is active when you select a data source or destination, for exam-
ple. Figure B.3 shows the Configuration tab contents for a data source.

Any changes that you make are reflected in the *-ds.xml file for the data source. Simi-
larly, if you edit a destination, the *-destination-service.xml file containing that desti-
nation is updated.
UNDERSTANDING THE METRICS TAB

The Metrics tab displays a table showing the metrics captured for the component. Fig-
ure B.4 shows the metrics gathered for a web application.

Figure B.3 The Configuration tab enables you to modify the configuration of a component.

447Jopr and Embedded Jopr
You can use the refresh button, which is barely visible at the bottom of the figure, to
gather the metrics again—the Admin Console doesn’t automatically update the metrics.
UNDERSTANDING THE CONTROL TAB

The Control tab displays a button for each operation provided by the component,
along with a description of what the operation does. Figure B.5 shows the Control tab
for a web application.

 And so ends our quick tour through the Admin Console. You’ve learned most of its
capabilities and explored details regarding some of the components. We now leave
you to explore the rest of the functionality and capabilities offered to you by the
Admin Console.

B.1.2 JBoss Portal 2.7.0

The JBoss Portal 2.7.0.GA release adds Portlet 2.0 support, as defined by JSR-286, to
JBoss Portal. The Portlet 2.0 specification addresses many issues that came up as peo-
ple attempted to build and deploy portlet applications, such as inter-portlet communi-
cation, sharing global parameters, serving content other than HTML text, and input
and output filtering. Please read the Portlet 2.0 specification to learn more about

Figure B.4 The Metrics tab displays metrics gathered for a component.

448 APPENDIX B Change is inevitable
these features. The rest of this section describes issues that you might encounter as
you work your way through chapters 10 and 11.

 Portal 2.7.0 requires a larger permanent generation space than prior versions of
the Portal. You need to edit the run scripts (run.bat on Windows, run.conf on Unix/
Linux/Mac) to set a maximum permanent generation size. For example, on Win-
dows, change the line that sets the heap sizes as follows:

set JAVA_OPTS=%JAVA_OPTS% -Xms128m -Xmx512m -XX:MaxPermSize=128m

The rest of the issues relate to creating a custom portal (section 11.5).
 Table 11.1 lists the *-object.xml files that ship with the portal. In 2.7.0, yet another

one is located at jboss-portal.sar/samples/portal-portlet-samples.war/WEB-INF/
default-object.xml. This *-object.xml file creates the Samples tab on the default page.
You should remove this file if you don’t want the tab to show up in the custom portal.

 Portal 2.7.0 uses the new renew theme as the default theme. This shouldn’t cause
any problems when creating the theme for the custom portal because we create a new
theme named jbia from the renaissance theme, so our existing instructions still work.

B.1.3 The common/lib directory

If you’ve used prior versions of JBoss AS, you’ll have noticed that the lib directories
under server/xxx contain almost the same JAR files. With only three configurations,
this wasn’t that much of a problem; but, when JBoss EAP came out, it included a fourth

Figure B.5 The Control tab displays operations provided by a component.

449Jopr and Embedded Jopr
configuration named production. Now the binary download zip file was bloating due
to duplicate JAR files. Additionally, the JBoss AS team wanted to add a few more config-
urations—which would lead to even more bloat.

 To solve this problem, the JBoss AS team decided to move the common JAR files
found in the configurations to a common location called common/lib. If you look at
server/default/lib, you’ll see that the directory is empty; server/all/lib contains the
extra JAR file required for clustering.

 The following system properties were introduced to identify this directory:

■ jboss.common.base.url—Identifies the location of the common directory
■ jboss.common.lib.url—Identifies the location of the common/lib directory

As with the other system properties, you can set these on the command line to change
the location of the directories.

B.1.4 The web configuration

As you read the prior section, one question probably popped to mind: what new con-
figurations? One of the common requests on the JBoss user’s forums is to slim down
the default configuration to remove things such as web services and messaging sup-
port, leaving only the servlet container. The web configuration provides such a
slimmed-down servlet container configuration. Now you no longer have to slim down
the default configuration by hand—a ready-made servlet container configuration is
there waiting to be used.

 Looking at the web configuration, you might think that it supports EJBs because it
contains the directory server/web/deployers/ejb3.deployer. But, that deployer only
supports annotations for EJB client, such as the @EJB annotation. The web configura-
tion does support JCA, so you can deploy *-ds.xml files for your data sources.

B.1.5 The profile service repository

The new profile service manages application lifecycles and performs such tasks as
deploying and undeploying applications. As of this writing, there’s scant documenta-
tion on this service. (JIRA issue JBAS-6070, which addresses this, is unresolved.)

 Two configuration files govern how the profile service works: one for the reposi-
tory-based profile service and the other for the non-repository-based profile service.
There’s even less information on what distinguishes these. The repository-based pro-
file service enables you to hook different repositories into JBoss AS, where a repository
is a mechanism to locate the various applications and configurations used to run the
application server. The 5.0 release ships with a file-based repository that uses the typi-
cal set of directories found within a configuration—such as the conf, lib, and deploy
directories—to locate resources.

 After the CR2 release, the repository-based profile service became the default, and
configuration files in the server/xxx/conf directory were renamed. The file that used
to be called bootstrap.xml is now called bootstrap-norepo.xml, and the file that used
to be called bootstrap-repo.xml is now called boostrap.xml. In addition, there’s a

450 APPENDIX B Change is inevitable
bootstrap-minimal.xml file, which doesn’t work at this time because it’s missing the
include statements for the virtual filesystem and the port bindings. The file named
bootstrap.xml is the default configuration file used to define the POJOs managed by
the microcontainer. The new boostrap.xml file includes the profile-repository.xml
file. In addition, all the bean configuration files, such as profile-repository.xml, were
moved to the server/xxx/conf/bootstrap directory.

 So what does all this have to do with you? It means that table 3.3 is now incorrect.
Well, not entirely incorrect—table 3.3 still describes the beans declared in profile.xml,
although some of those have moved to other files. By default, these beans are no lon-
ger used. Instead, the beans declared in profile-repository.xml are used.

 Perhaps the best way to highlight the changes is to identify either where the beans
went or what beans in profile-repository.xml provide the same or similar functionality
to the beans in profile.xml (table B.1).

If you need to deploy applications from a location other than server/xxx/deploy, you
can add more <value> entries to the applicationURIs property, as shown in the
example in listing B.1.

Table B.1 Mapping beans that were in profile.xml to their new location or replacement in
 profile-repository.xml

Old profile.xml bean Old bean’s property Comment on new location

MainDeployer -all- Moved to deployers.xml.

DeploymentFilter -all- Also appears in profile-repository.xml.

VFSDeploymentScanner URIList SerializableDeploymentRepository
Factory bean, applicationURIs property.

URIs You can provide each directory location as its
own <value> entry. See listing B.1 and the
following text.

recursiveSearch Not supported.

VFSBootstrapScanner - Replaced by ProfileServiceBootstrap
bean but without any of the properties, such as
URIs, supported by VFSBoostrapScanner.
SerializableDeploymentRepository
bean provides the location of the bootstrap
directory; it’s hardcoded and can’t be changed.

VFSDeployerScanner - The
SerializableDeploymentRepository
bean provides the location of the deployers
directory; it’s hardcoded and can’t be changed.

HDScanner -all- Moved to server/xxx/deploy/profileservice-
hdscanner-jboss-beans.xml.

451Jopr and Embedded Jopr
<deployment ...>
 ...
 <bean name=" SerializableDeploymentRepositoryFactory " ...>
 ...
 <property name="applicationURIs">
 <array elementClass="java.net.URI">
 <value>${jboss.server.home.url}deploy</value>
 <value>file:///c:/temp/deploy</value>
 <value>file:///c:/temp/alternate/</value>
 </array>
 </property>
 </bean>
</deployment>

Unlike the URIList property for the VFSDeploymentScanner bean, the application-
URIs property accepts only directory names—you can’t specify a package name such
as a specific WAR file or exploded WAR directory. In addition, as shown in the exam-
ple, it doesn’t matter if you end the directory name with a slash, or if you leave it off.

B.1.6 The jboss.system.log.threshold system property

In prior releases of JBoss AS, the server.log file logged all messages with a threshold of
TRACE or higher. The 5.0 release uses the jboss.system.log.threshold system prop-
erty to define the level. This system property is set to DEBUG by default. You can easily
override the setting by passing a value for the property on the command line, such as
the followng:

run -Djboss.system.log.threshold=WARN

You can also change the default by editing the server/xxx/conf/jboss-service.xml file.
Look for the attribute named DefaultJBossServerLogThreshold on the logging ser-
vice MBean.

B.1.7 References
Jopr home page —http://www.jboss.org/jopr/
JBoss ON Documentation—https://docs.jbosson.redhat.com/confluence/display/JON2/Home
JSR-286 specification—http://jcp.org/en/jsr/detail?id=286

Listing B.1 Adding more deployment directories in profile-repository.xml

http://www.jboss.org/jopr/
https://docs.jbosson.redhat.com/confluence/display/JON2/Home
http://jcp.org/en/jsr/detail?id=286

index
Symbols

@ActivationConfigProperty
215, 220

@CacheConfig 363
@Clustered 362–363
@Consumer 220
@EJB 449
@EndpointConfig 246, 248,

255–256
@Entity 169
@GeneratedValue 169
@LocalBinding 178
@MessageDriven 215, 218
@PersistenceContext 183
@PersistenceUnit 183
@Producer 220
@RemoteBinding 178
@SecurityDomain 246, 252
@SOAPBinding 245
@Stateless 248
@WebContext 246, 248, 252
@WebMethod 239, 242
@WebService 239, 242
*.hbm.xml 68
*.last 52
*.wsr file 239
*-destination-service.xml 445
*-ds.xml 62, 425, 445, 449

MySQL example 268
PostgreSQL example 223
tuning 398, 400

*-hibernate.xml 68
*-jboss-beans.xml 30

*-object.xml
custom portal example

310–311
custom theme 314
files that ship with Portal

309, 448
multiple windows

example 294
portal access control

example 304
portlet example 282
portlet window example 285
renderer 291
roles 306
subpage example 307
window appearance 291

*-service.xml 227
$data source 61, 67
$EJB 162, 167
$web security 136

A

acceptCount 401
access control

accounts 224
messaging 224
roles 224

acknowledgementMode 216
Active Directory 95

member 99
memberOf 99
multiple directory trees 99
sAMAccountName

97, 99, 101

userPrincipalName 101
Users and Computers tool 97

Admin portlet 270, 290, 292,
298, 303, 308

create portlet instance 284
create portlet window 285
multiple portlet windows 292

admin-console.war 444
administration console 443
AJAX 163, 290
AJP connector, tuning 401
AJP port 416
AJP protocol 118, 355
Ant 58
aop.xml 33
Apache HTTP Server

110, 378, 401
Apache Portable Runtime

110, 428
Apache Tomcat 110
Apache Web Server 355
Apple 385
application 50
application packaging 49
application server

all configuration 422
default configuration 422
remove applications 424
run as service 427–434
running multiple instances.

See collocating
service account 433
shut down 422
slimming 422
Windows service

account 431–432
453

INDEX454
application.xml 50, 52, 166
application-policy 91

LDAP example 100
applicationURIs 450
APR. See Apache Portable

Runtime
AprLifecycleListener

warning 429
architecture, application

server 30
archive. See application

packaging
asymmetric encryption 82–84
asynchronous remote procedure

calls 220
attributes.xml 426
AuthConfig 81
authentication 76
authMethod 247, 252
authorization 76
AUTO_ACKNOWLEDGE 209
Auto-acknowledge 216
automatic discovery

327–328, 370
AvailableConnectionCount 399

B

BEA WebLogic Server 30
beans configuration file 30
BIG-IP 356
bin directory 13
binary large object,

messaging 207
binding 417
binding.xml 415
BindingProvider interface 252
BLOB. See binary large object
blocking-timeout-millis 64
bootstrap directory 450
bootstrap.xml 31, 33, 449
bootstrap-minimal.xml 450
bootstrap-norepo.xml 449
bootstrap-repo.xml 449
bottleneck 377
breadcrumbs, Admin

portlet 286
buddy replication 348
bytecode 384
BytesMessage 206

C

C# 244
CA. See certificate authority

cacerts 87
cache loader 360–361
cache replication

CacheMode 357
SyncReplTimeout 357
triggering 357

cacheLoaderConfig 363
Candidate Release 411
certificate authorities list 84
certificate authority

75, 84–87, 89
certificate signing request 85
certificate-based

authentication 87–90
checkInterval 402, 435
check-valid-connection-sql 64
chkconfig 434

utility 433
chmod command 434
chown command 433
class loader 55

error 61
loading 55
repository 56
web 129–130

ClassCastException 59–60
classloader.xml 33
ClassNotFoundException 58
CLASSPATH 14
client application 14

class path 59
Hibernate 70

client certificate
authentication 89

Client class
web service C# example

244, 246
Web service example 243

client directory 14
Client-certificate

authentication 137
clientId 216
cluster

makeup 326
performance 326
topology 325, 329

cluster-beans.xml 340, 342, 369
Clustered attribute 224
clustering

calling an EJB 337–338
configuring TCP 346
configuring UDP 344–345
portal 264
starting a cluster on a single

machine 334

TCP 328
TCP versus UDP 344
UDP 327
vs. distribution 333–334

CMS Admin 269
portlet 315

CMS portlet 311
CMS. See Content Management

System
CMSWindow 298
collocating 22, 414

prevent file clashes 414
prevent port clashes 415

comma-separated value file. See
CSV file

community edition 412
concurrency 129
configFile 248

element 256
configName 248
<config-name> 249
configuration

default 449
production 449
web 449

Configuration tab 446
Connection 204
ConnectionCount 399
ConnectionCreatedCount 399
ConnectionDestroyedCount

399
ConnectionFactory 204, 209
connection-url 63
connector 136
Connector element 400
Content Definition panel 286
Content Management

System 264–265, 295–299
accessing content 298
custom content 315–316
default content directory 315
URL description 298

contextRoot 247
default value 248

Control tab, admin console 447
convention over

configuration 173
CPU 382

32-bit vs 64-bit 381
multiple 381

CR. See Candidate Release
createActionURL method 273
createSession method 209
Credit class 220

INDEX 455
CSR. See certificate signing
request

CSS. See style sheet
CSV file 392–393

from verbose:gc 392
CTRL-C 422
Customer class

messaging example 211
with authentication 228

D

daemon 382
running JBoss as a 20

dashboard 307
data source

configuration 15
connection pool 40
data-source 169
messaging 223

database connection pool 399
database tuning 377
default-content directory 315
DefaultContentLocation

attribute 315
DefaultDS 40

replacing 425
default-object.xml 316
DefaultPolicy attribute 315
DefaultSecurityConfig 226
Demilitarized Zone 324
denial-of-service attack 378
deployer

EJB 172
jbossweb.deployer 115
tuning 398
WAR deployer 119
war-deployers-beans.xml 115

deployers.xml 33, 450
use in deployment 52

Deployment
moving vs. copying 26
where is the GUI? 23

deployment 48–55
alternate directory 54, 450
directory 48
exploded directory 49
hot deployment 48
ordering 52
simple example 23–26

deployment isolation 12
DeploymentFilter 53, 450
DeploymentScanner. See

VFSDeploymentScanner

<description> 280
descriptor, primary 49
Destination 204
destination access modes 226
destination property 216
destinations-service.xml 227
destinationType 216
Developer Release 411
development 402

JspServlet parameter 435
DHCP 418–419
directory

bin 428
common/lib 448
conf 33, 38, 52, 231, 444, 449
config/props 424
configure location 37–39
data 38
default 38
deploy 32, 48, 217, 227,

267–268, 283, 317, 423, 443
deploy/messaging 224
deployers 51
examples/config 223
exploded 60
lib 38, 267, 423
log 34, 38
server 38
server lib 56, 223
tmp 38, 49–50

<display-name> 280
distributable 356
div renderer 290
DMZ. See Demilitarized Zone
docs directory 15
Document Type Definition 281

for jboss-app.xml 281
for portlet-instances.xml 282

doEdit method 272, 275
doHelp method 272
doView method 272
DR. See Developer Release
driver-class 63
DTD. See Document Type

Definition
dynamic proxy 164–165, 167,

170, 323, 338, 363

E

EAP 412
EAR. See Enterprise Archive
Eclipse 403
Eclipse JDT 10
eden space. See heap, eden space

edit.jsp portlet example 277
EJB 4

application
configuration 173–176

business interface 164
container configuration 172
history 162
JMX service objects 184–187
JNDI binding 177–179
JNDI lookup 170
partial deployment

descriptor 173
remoting 164
server configuration 176–177
types of 162

ejb containers 179–182
EJB deployment

descriptor 173–176
ejb-jar.xml 173–174
jboss.xml 175–176
persistence.xml 174–175

ejb packaging 171
EJB remoting

configuration overview
188–190

invocation handler 189
proxy factory 189
transport configuration

example 190–191
unified invoker 189–190

EJB security
annotations 192–194
non-integrated security

195–197
secure (SSL)

communication 197
XML configuration 194–195

EJB3 container 30
ejb3 deployer 172
EJB3 timer service 426
ejb3-connectors-service.xml 176
ejb3-deployers-beans.xml 176
ejb3-entity-cache-beans.xml 176
ejb3-interceptors-aop.xml 176
ejb3-timer-server.xml 427
ejb3-timer-service.xml 176, 426
EJB-JAR 166
ejb-jar.xml 50, 171, 173–174

messaging 218, 230
Embedded Jopr 443

add a new resource 445
embedded-jopr.war 444
empty renderer 290
<encrypt> 255
<encryption/> 255

INDEX456
encryption
secret key 82
symmetric vs.

asymmetric 82–84
endpoint 237
Endpoint Address 240
<endpoint-config> 249
endpointInterface 242
Enterprise Archive 166

deployment descriptor 166
enterprise deployment

descriptor 166–167
application.xml 124–125

Enterprise Java Bean. See EJB
Enterprise JavaBean 236
enterprise packaging 166–167
enterprise releases 412
entities 162

configuration 182–184
entity bean cache 347
entity data 329
entity manager 163, 165,

167–168
EntityManager 182–183
EntityManagerFactory 182–183
/etc/init.d 432
ethtool utility 380
Excel 393
exception-sorter-class-name 64
EXE file 245
exploded directory 316, 443
expression language 274, 276
Extensible Markup

Language 236

F

fail over 330
failover 329
farming 337
fault tolerance

326, 329–330, 356
<feature> 249
field-level replication 359
forums portlet 264
fpconfig 420
from space. See heap, from space

G

GA. See General Availability
garbage collection 385

concurrent 388
Concurrent Mark Sweep 389
description 387

full collection 388, 395, 397
full collection graph 394
graphing data 393–396
ideal graph 395
parallel 388
steady state 395

General Availability 411
GenericPortlet class 271
GenericSOAPHandler class 255
genStrAsCharArray 402
GET request 251
GlassFish Mojarra 132

H

HA Partition cache
341–343, 347

HAR. See Hibernate archive
HDScanner 54
heap

description 385
eden space 385, 387
from space 385, 387
permanent space 385
sizing recommendation 396
survivor space 385
tenured generation 385
to space 385, 387
young generation 385

recommendation 395
heap sizing

defaults 387
development 387
for 32-bit JVM 381
for 64-bit JVM 382
production 387

<height> 285
height setting 295
help.jsp

portlet example 278
Hibernate 6, 165–166,

182–184, 264
archive 67, 72, 167
mapping file 68
mappings 183–184

high availability 322, 324, 326,
328, 347, 354, 356

high-availability JNDI 367–372
Home page directory 423
horizontal cluster 325, 329
hosts file

Linux 421
Windows 419

HotSpot JVM 384, 409
HP 385

HSQLDB 425
hsqldb*.jar 426
hsqldb-ds.xml 426
hsqldb-peristence-

service.xml 224
hsqldb-persistence-

service.xml 229, 426
HTML editor 298
html img tag 276
HTTP 236

connection tuning 400
port 416
protocol 118
session cache 347

HTTP Invoker service 423
HTTPS 75, 142

client certificate 141
port 416

Hypersonic 266
*-ds.xml file. See hsqldb-ds.xml
database 223
JAR file 426
replacing 425

I

IBM VM 409
ICredit interface 220
Identity Admin portlet 269
<idle-timeout-minutes> 399
<share-prepared-

statements> 400
idle-timeout-minutes 64
ifcfg-eth0 420
<if-exists> 285
IFrame portlet 264
IIS 355, 401
Image portlet 270, 283
image.war 283
ImageBean 275
ImageBean class 274
image-object.xml. See

*-object.xml
ImagePortlet class 271, 283
ImagePortletInstance

283–284, 287
index.html 296
indexpage preference 315
init method 271
initial context 209
<init-param> 280
installation 9–13

downloading 11
from environment

variables 10–11

INDEX 457
installation (continued)
from the binary 11
from the installer 11–13

<instance-ref> 285
interface, message-driven

POJO 219
inter-portlet

communication 447
InUseConnectionCount 399
IP address 127.0.0.1 418
IP ports, configuration 415, 443
ipconfig 419
IPv6 417

J

J2EE 411
J2SE 409
JAAS callback handler 196
JAAS. See Java Authentication

and Authorization Service
JaasSecurityDomain 90
JacORB 33
jacorb.properties 33
JAR file

MDB example 217
message-driven POJO

example 222
messaging example 213
web service client

example 243
web service EJB example 248
web service encryption EJB

example 258
web service encryption

example 256
JAR files directory 38
jarFinder 59
Java 2 Platform, Enterprise

Edition. See J2EE
Java 2 Platform, Standard

Edition. See J2SE
Java API for XML-based Web

Services 236
Java Authentication and

Authorization Service
79, 196, 264

Java EE 411
advantages 5–6
component 5
component model 5
deployment model 5
market share 7

Java Enterprise Edition 5 5

Java Management Extensions.
See JMX

Java Message Service 202
Java Message System API 204
Java Naming and Directory

Interface 15
Java Native Interface. See JNI

Windows service
Java Persistence API. See JPA
Java Platform, Enterprise

Edition. See Java EE
Java Runtime Environment 10
Java Server Faces

FacesServlet 133
libraries 115

Java Server Pages 161
Java Software Development

Kit 10
Java Virtual Machine 11, 409

tuning 384–398
java2ClassLoadingCompliance

56
java2ParentDelegation 57
JAVA_HOME 10, 431
_JAVA_LOADER_DEBUG 428
JavaOne 235
JAVA_OPTS 385, 387
JavaServer Faces 132, 265
JavaServer Pages 270
JavaServer Pages Standard Tag

Library 270
portlet 270

javax.net.ssl.trustStore 233
javax.net.ssl.trustStorePassword

233
javax.portlet package 271
JAX-WS. See Java API for

XML-based Web Services
jax-ws-catalog.xml 33
jbia-portal.sar 316
JBoss 4–9
JBoss Application Server

architecture 29–33
compared to other

products 8–9
configuring 33–40
history 4
popularity 7–8
tuning 398–402

JBoss AS. See JBoss Application
Server

JBoss Cache 6, 332, 338–339,
346–350, 364–367

buddy replication 348
cache loader 349

cache mode 348
eviction policy 349–350
isolation level 348

JBoss Clustering 6
JBoss EAP 412, 444, 448
JBoss Enterprise Application

Platform. See JBoss EAP
JBoss Enterprise Middleware

Suite 6–7, 264
JBoss Enterprise Portal

Platform 412
JBoss Forums 264, 316
JBoss Messaging 6

architecture 206
JBoss Messaging Core 207
JBoss Microcontainer 6
JBoss Native 428

Windows service 428–431
JBoss ON 443
JBoss ON. See JBoss Operations

Network
JBoss Operations Network 40
JBoss Portal 6

installing 266–268
JBoss Remoting 207

secure messages 231
JBoss Remoting. See EJB

remoting
JBoss SX 6, 136
JBoss Transactions 207
JBoss Web Server 6

AJP protocol 126–129
configuration 115–119
connector configuration

126–129
context path

configuration 120, 123–126
context.xml 115
Host configuration 118
HTTP protocol 126–129
HTTPS protocol 126–129
main directories 115
port configuration 120
protocol configuration 120
resource path

configuration 120
root application

(ROOT.war) 115
secure HTTP connector 139
server.xml 115–119, 122–123,

130, 136
URL path configuration

120–121
Valve configuration 118
valves 130–132

INDEX458
JBoss Web Server (continued)
virtual host 121–123
WAR deployer 119

JBoss Wiki 264, 316
JBoss World conference 443
jboss.xml 171, 175–176
jbossall-client.jar 213
jboss-app.xml 166, 227

defining data source 66
Hibernate archive 71
loader repository 57
portlet example 281

jboss-app_2_0.dtd 281
jboss-ds_1_5.dtd 63
JBOSS_HOME 432
jboss_init_*.sh 433
jbossjta-properties.xml 33
jboss-log4j.xml 33–34, 258
JBossMQ 202, 207
jboss-portal.sar directory

267, 316
jboss-service.xml 31–33, 50, 451

custom CMS content
example 315

loader repository 56
UDDI service 426

jbosssvc.exe 429
Jboss-web.xml 424

virtual host example 425
jboss-web.xml 282, 357

loader repository 57
UDDI service 426
Web service 251

jboss-web-cluster-beans.xml 357
jbossws-roles.properties 250
jboss-wsse-client.xml 256, 259
jboss-wsse-server.xml

254, 256, 259
jbossws-users.properties 250
JConsole 404
JDBC 61, 202

driver 223, 267
messaging 207

JEMS Installer 9, 11, 422
data source 12
deployment isolation 12
security 13
services 12

JEMS. See JBoss Enterprise
Middleware Suite

JGroups 327, 338–339
channel 339
messaging 207
protocol 339

protocol stack 339, 341, 343
stack 347

JMeter 379
JMS Façade 207
JMS. See Java Message Service
JMSXDeliveryCount 205, 216
JMX 31

service objects 184–187
JMX Console 23, 40

directory 423
issues with using 41
loader repository 57
securing 424

JMX kernel 29–30
jmx.xml 33
jmx-console 444
JNDI 96, 165, 167

binding EJB 177–179
exception 60
message destination 228
port 415
properties file 213

jndi.properties 33
messaging 209

jndi-name 63
JNI Windows service 428
Jopr 443
JPA 165, 364

deploying Hibernate
mappings 183–184

injecting Hibernate
objects 182–183

persistence unit 173
JProbe 403
JRockit VM 409
JSP 434–435
JSPC compiler 435
JspServlet 401, 434
JSR 3 31
JSR-109 236, 241
JSR-168 265

descriptor file 279
JSR-181 236, 246
JSR-286 447
JSR-88 49
JSR-914 202
jstl, f:message tag 276, 278
JSTL. See JavaServer Pages

Standard Tag Library
JVM option

–client 384
–server 384
-server on Windows 385
-verbose:gc 389, 392, 394
-version 410

-Xloggc 390
-Xms 386
-Xmx 386
-XX:+DisableExplicitGC

398, 403
–XX:+PrintGCDetails 389
–XX:+PrintGCTimestamp

390
-XX:+PrintHeapAtGC

390–391, 396–397
-XX:+UseConcMark-

SweepGC 388
-XX:+UseParallelGC 388
-XX:+UseParNewGC 388
-XX:+UseSpinning 397
-XX:+UseTLAB 386
-XX:MaxNewSize 386
-XX:MaxPermSize 386, 397
-XX:MaxTenuring-

Threshold 386
-XX:NewRatio 386
-XX:NewSize 386
–XX:ParallelGCThreads 388
-XX:SurvivorRatio 386, 397
-XX:TLABSize 386

JVM. See Java Virtual Machine
jvm.dll 428
jvm.so 428
jvmRoute 355
JXplorer 96–97, 99

K

keepAlive 217
<key-passwords> 255
keystore 231

web service 253
<key-store-type> 254
KeyStoreURL 231
keytool 85–87

example usage 253, 259
messaging example 231

kill command 404
King, Gavin 165

L

LDAP 74, 80, 95–102
directory tree 96
distinguished name 96
group object 95
name attribute 99
port 97
uid 97
user object 95

INDEX 459
LDAP login module 100–101
LdapExtLoginModule 100
LdapLoginModule 100
ldapsearch 96, 100

usage 98–99
lib directory 15
Linux service 432
listen method 212
load balancing 328

active cookie persistence 356
encryption 356
hardware 356
HTTP session 354–356
mod_jk 355
mod_proxy 355
overview 322–323
passive cookie

persistence 356
policy 362
round-robin DNS 325
session bean 362–363
sticky session 356
strategies 324
synchronous vs. asynchronous

applications 323
types of balancers 323–325
with a native web server

355–356
Lobachevsky 55
localhost 39, 418
localization 276–278
local-tx-datasource 62
log file, Web service client 244
log4j. See logging
log4j.jar error 59
log4j.properties 244
logging 34–37

Apache Jakarta Commons
Logging 36

appenders 34
application 36
console 34–35
Hibernate 35
jbia.log 37
limiting 35
MBean 45
messaging 35
new log file 36
reduce output 398
rolling log file 34
security 81–82
web access logging 130

login module 77–80, 89, 225
BaseCertLoginModule

91–102, 104, 156–157
CertRolesLoginModule 91

ClientLoginModule 92, 196
configuration 91–92
DatabaseCertLoginModule

92
DatabaseServerLoginModule

92, 94–95
IdentityLoginModule

92, 102–104
LdapExtLoginModule

92, 100–102
LdapLoginModule 92
RunAsLoginModule 92
SimpleServerLoginModule

92
SRPCacheLoginModule 92
SRPLoginModule 92
stacking 102–104
UsersRolesLoginModule

80, 91–94, 145, 158–159
login-conf.xml 229
login-config.xml 33, 81, 137,

424, 426
messaging example 225
used for data source 63
web service 250

logo.gif 312
loopback 345
loopback alias 424

M

Mail service 423
Main Deployer 31
MainDeployer 53, 450
Managed Bean 31

name 32
server 31

ManagedConnectionPool
MBean 399

management tools 40–43
MapMessage 206
marshal 237
MaxConnectionsInUseCount

399
MaxPermSize, for portal 448
<max-pool-size> 398, 400
max-pool-size 64
maxSession 217
maxSpareThreads 401
maxThreads 401
MBean 40

DataSourceBinding 65
JNDIView 44
LocalTxCM 65
log4jService 45

MainDeployer 48, 54
ManagedConnectionFactory

66
ManagedConnectionPool 66
NoTxCM 66
portal, service=CMS 315
Server 41
server information 46
SystemProperties 44
ThreadPool 46
XATxCM 66

MBean name 228
MBean. See Managed Bean
MD5 145–146
MDB. See message-driven bean
Members page 300
message

header 205
JMSMessageId 205
JMSTimestamp 205
payload 205
properties 205

Message interface 205
message selector 205, 212, 219

example 215
Message Transmission Optimiza-

tion Mechanism 249
message.properties 278
MessageConsumer 204
MessageConsumer

interface 214
message-driven bean 207, 214

access control 230
deployment descriptor 218
pool 217

<message-driven> node 219
MessageListener 208

interface 211, 215
messageSelector 216
messaging

architecture 202
asynchronous messages 208
client 202
client packaging 213
client SSL configuration 232
close connection 210
configuration files 229
configuring destinations 227
connection 221
consumer 209, 212, 214
database 204
durable subscription

215, 226–229
dynamic queue 207
listener 209

INDEX460
messaging (continued)
message persistence 229
multiple sessions 208
multiple threads 208
producer 209, 212, 221
property name 212
publisher 203, 207
queue 203
receiver 203
secure transport 230
sender 203
server 202
SSL configuration files 233
subscriber 203, 207
topic 203, 209
unified API 205

Messaging service 423
messaging system

architecture 202
messaging-jboss-beans.xml 426
messaging-oriented

middleware 202
messaging-service.xml 226, 229
Metrics tab, admin console 446
microcontainer 16, 29–31, 450

configuration file.
See bootstrap.xml

Microsoft IIS 109
Microsoft Loopback

Adapter 334
Microsoft Network Load Balanc-

ing Service (NLBS) 324
Microsoft Professional Develop-

ers Conference 235
mii-tool utility 380
<min-pool-size> 398, 400
min-pool-size 64
minSession 217
minSpareThreads 401
modificationTestInterval

402, 435
mod_jk 118, 355
mod_proxy 355
MOM. See messaging-oriented

middleware
Monitoring service 423
MTOM. See Message Transmis-

sion Optimization
Mechanism

multicast 327–328
multicore processor 384
multiple unicast 327–328
multiplexer-stacks.xml 343–344
mutual authentication 88

MySQL 264
*-ds.xml 62
configure for portal 268
Quartz config 427

mysql utility 268

N

naming service, managed
bean 32

naming-jboss-beans.xml 415
NASA Astronomy Picture of the

Day 270
native web server 324
nested applications 52
net command 429
.NET Framework 235, 244
NetBeans 403
network card

properties, tuning
example 380

speed 380
Network Connections 380
network interfaces file 421
network latency 326
network-scripts directory 420
News portlet 309
NFS 337
no security manager error 59
node 322
no-tx-datasource 62

O

object query
group 99
user 98

ObjectMessage 206, 210, 212
object-relational mapping 165
old generation. See heap,

tenured generation
onMessage method 210, 215
OpenOffice.org Calc 393
ORM. See object-relational

mapping
out of memory exception 397

P

Page Layout
link 286
panel 286
view 286, 293

page portal 266

<parent-ref> 285
partition 335
passivation

HTTP session 360
session bean 363

password property 217
PDF 50
performance tuning

analysis cycle 379
baseline 379
completion criteria 379
methodology 376–379
monitoring tools 379
network card speed 380
one change at a time 379
repeatable tests 378
test cycle 377–379
test environment 378
test scripts 378

Perl 392
permanent generation 397

out of memory error 397
permanent space. See heap,

permanent space
persistence context 165, 168
persistence unit 175
persistence.properties 176
persistence.xml 171, 173, 182
phishing. See security
Photoshop 312
point-to-point messaging 203
POJO 67

message-driven 219
origin 29
web service 239

<policy-permission> 306
port

1099 422
443 236
80 236
JNDI 422

portal 266
access control 299, 302,

306–308
Admin 300
admin 286
Admin portal 269
change admin password 300
configure database 267–268
create account 299
createActionURL

method 273
custom 308–318
customization 265
dashboard 307

INDEX 461
portal (continued)
default 286
defining access control 304
disallow access 301
edit role members 300
example PortalA

301, 304, 307
internationalization 265
login 268
login accounts 299
package custom portal

316–318
page-level access 301
personalize access 301, 307
prevent account creation 300
recursive access modifer 301
roles 300
security 299
subpages 306
template 286
terminology 265
theme 265
theme customization 312–314
title 314
unchecked role 300
URL 267, 317
User role 300
view access 301

Portal Objects tab 286
portal subpage URL 307
PortalA. See portal, example

PortalA
portal-portlet-jsr168api-lib.jar

 271
portal_style.css 312
portal-theme.xml 313
portlet 266

access control 303
CMS Administration 297
CMS portlet 309
create instance 283–284
create window 284–287
database 273
deployment 282
display mode 271
doEdit method 272
doHelp method 272
doView method 272
edit display mode 271
forums 264
help display mode 271
id 281, 284
init method 271
initialization parameters 271
instance 281

override title 275
personalize 293
preference data 292
preferences 273, 293
processAction method 273
renderer 290
RSS reader 264
tag library 277
User portlet 299
view display mode 271
Weather 264
wiki 264
window title 292

Portlet 2.0 specification 447
portlet instance 266
Portlet Instances list 303
Portlet interface 271
Portlet Swap website 264
portlet window 266
portlet.xml 278, 283

custom CMS content
example 315

portlet example 279
<portlet-info> 280
portlet-instance.xml

multiple instances
example 293

portlet preferences 293
portlet-instances.xml

create instance 283
custom portal example 311
portlet example 282

portlet-instances_2_0.dtd 282
<portlet-name> 280
<portlet-preferences> 280
PortletPreferences class 273
portName 242
ports-01 binding name 417
Ports01Bindings bean 416
ports-default binding name 417
PortsDefaultBindings bean 415
POST request, web service 251
postgres-ds.xml 223
postgres-persistence-

service.xml 223
PostgreSQL 222–223

Quartz config 427
postgresql-persistence-

service.xml 229
<post-handler-chains> 249
PowerShell 429
<pre-handler-chains> 249
prepared statement cache 400
<prepared-statement-cache-

size> 400

principlesQuery 226
probe 13
Process Manager tool 384
processAction method 273
processor affinity 382

guidelines 383
taskset utility 382
Windows dialog box 382

processor cache 383
Producer annotation 222
ProducerObject interface 221
profile service 31, 449
profile.xml 33
profiler, tuning application 403
profile-repository.xml 450
profile-service.xml 30

use in deployment 52
ProfileServiceBootstrap 450
profileservice-hdscanner-jboss-

beans.xml 450
profiling tools 402
properties-service.xml 39
property. See system property
providerAdaptorJNDI 217
proxy 237
psql utility 223, 225
public key certificates 84–85
publish-and-subscribe

messaging 203
publisher. See messaging,

publisher
Pure Load Balancer (PLB) 324

Q

Quartz job scheduler 426
Quartz service 423
queue. See messaging, queue
QueueService class 228
QueueSession 204
QUIT signal 404

R

ra.xml 50
random load balancing 324
receiveNoWait method 214
receiver. See messaging, receiver
reconnectInterval 217
Red Hat logo 270
<region> 285
regular expression 274, 392
remote method invocation 236
RemoteObject, narrow 61

INDEX462
remoting 164
calling clustered EJB 337–338

remoting-service.xml 233
messaging example 231

Renaissance portal theme 312
used by CMS and Admin 313

Renew portal theme 448
replay attack 145
replication 330

asynchronous 330
entity cache 364–367
HTTP session 356–361
session bean 363
synchronous 330

replication granularity 359
replication trigger 358
<resource-bundle> 280
response time 375
RMI. See remote method

invocation
Role Management tab 300
rolesQuery 226
root context path 125
round robin load balancing 324
RSS news reader portlet 264
run command 38
run script 385, 387, 404, 448

b option 418, 433
c option 433

run.bat 429
Russian doll 52

S

SalesTax class
web service EJB example

247, 252
web service encryption 255
web service example 238

SalesTaxImpl class, web service
example 241

Samples tab 448
scalability 322, 326, 354, 383
scaling 375

horizontal 376
out 326, 376
up 326, 376
vertical 376

schedule-manager -
service.xml 426

Scheduler service 423
scoping 56
secure communication

75, 82–91

secure socket layer 230
secureWSDLAccess 247, 252
security 75–76

auditing and
accountability 74

authentication 76–77
authorization 77–78
confidentiality 82
credential 77
data integrity 82
dynamic login

configuration 80–81
keytool 149, 158
logging 81–82
login-config.xml 90
managed bean 32
phishing 75
principal 76
programmatic 78
role-based 299
server applications 423
source integrity 82

Security domain 137
security domain 79

configuration 78–80
security realm

messaging example 225
web service 250

SecurityAssociationHandler 196
<security-constraint> 306
security-domain 63
Selected file attribute, CMS

Window 298
sender. See messaging, sender
SerializableDeployment-

Repository 450
SerializableDeployment-

RepositoryFactory 450
server affinity 324
server configuration 15

conf directory 17
customizing 19
data directory 18
deploy directory 18
deployers directory 18
directory structure 17
generated directory 18
lib directory 18
log directory 18
tmp directory 19
understanding 16–19
work directory 19

server directory 15
server.log 34, 258, 260, 451

server.xml
loopback example 425
port binding 416
tuning 400–401

service 50
remove unneeded 398
removing 422
running JBoss as a 20

service level agreement
375–376, 389

Service Pack 411
service.bat 429
service_accounting.bat

example service.bat 430
ServiceBindingManager

bean 416
ServiceBindingManager

MBean 416–417
Services control panel

429, 431–432
servlet 161
session bean 164, 214

configuration 177–182
session bean pool size 181
session data 329
session replication 356
Session, messaging 204
SFSB passivation 181–182
showAll method 44
shutdown script, -s option 422
shutdown.bat 430
<sign> 255
<signature/> 255
simulated multicast 328
SLA. See service level agreement
slimming 16
SMB 337
SOAP 237

binding styles 237, 245
document binding style

237, 245
message encrypting 252–260
RPC binding style 237

social hack 84
SP. See Service Pack
Spring Framework 29
SSL 137
SSL/TLS 82, 90–91, 145
SSL-aware security domain

90–91
standard-jaxws-client-

config.xml 258
standard-jaxws-endpoint-

config.xml 248, 255

INDEX 463
standardjboss.xml 33, 172, 180
messaging 217

standardjbosscmp-jdbc.cmp 33
standardjbosscmp-jdbc.xml 426
starting the server

alternative configuration
21–22

default configuration 20–21
verifying 22–23

startup time 20
state passivation 332–333
state replication 330
stateful applications 328
stateful session bean 164, 329,

333, 337, 341, 346
stateful session bean cache

347, 349
stateless session bean 164
sticky session 356

load balancing 324
stopping the server 23
Store class

messaging example 208, 221
with authentication 228

store method, portlet 273
StreamMessage 206
style sheet 312
subscriber. See messaging,

subscriber
subscriptionDurability 216
subscriptionName 216
Subversion 444
suffix, use in deployment 50
Summary tab, admin

console 445
Sun Microsystems 236, 384
SunOne 355
<supports> 280
survivor space. See heap, survivor

space
symmetric encryption 82–84
system account 431
system property 37, 39–40, 231

com.sun.management.
jmxremote 404

jboss.bind.address 39
jboss.common.base.url 449
jboss.common.lib.url 449
jboss.home.dir 37
jboss.home.url 37
jboss.lib.url 38
jboss.patch.url 38
jboss.server.base.dir 38
jboss.server.base.url 38
jboss.server.config.url 32, 38

jboss.server.data.dir 38
jboss.server.home.dir 38
jboss.server.home.url 38
jboss.server.lib.url 38
jboss.server.log.dir 35, 38
jboss.server.name 39
jboss.server.root.deployment.

filename 32
jboss.server.temp.dir 38
jboss.service.binding.set 417
jboss.system.log.threshold

451
MBean 44
org.jboss.ws.wsse.* 257
sun.rmi.dgc.client.gcInterval

398
sun.rmi.dgc.server.gcInterval

398
variable substitution 35, 39

System.gc() method 398, 403

T

tail utility 434
Task Manager 432
taskset utility 382
TCP 328
TCP/IP settings dialog 419
tenured generation. See heap,

tenured generation
TextMessage 206
thread dump 54, 403–406
thread name 405
thread-local allocation

block 386
threads

AJP 401
HTTP 401

throughput 375
time to live (TTL) 345
timeline 442
TLAB. See thread-local allocation

block
to space. See heap, to space
topic. See messaging, topic
TopicService class 228
TopicSession 204
transaction-isolation 65
transportGuarantee 247
trimSpaces 402
truststore 89, 231

web service 253
<trust-store-type> 254
twiddle 13, 42

application deployment 48

two.html, CMS example 296
two-phase commit 207
type-mapping 64

U

UDDI. See Universal Description,
Discovery, and Integration

UDP 327
Unchecked role 303
undeploy 48
Unique ID key generator 423
Unisys 385
Unisys JVM 384
Universal Description, Discov-

ery, and Integration 237
unmarshal 237
uptime 328
URIList 54, 450
urlPattern 247, 251

default value 248
useJBossWebLoader 56
user forums portlet 264
user profile 300
user property 217
USERDNSDOMAIN 97
UsersRolesLoginModule

252, 424

V

value element, web service 252
valves

RequestDumpterValve 356
variable substitution. See

system property, variable
subsititution

version control 19
vertical cluster 325
vertical clustering 329
VFSBootstrapScanner 54, 450
VFSDeployerScanner 54, 450
VFSDeploymentScanner 53, 450
Video class 208
video-service.xml 227
view.jsp 276
viewrecursive 306

access 304
virtual IP address 419
virtualHosts 247
Visual Studio 235, 244

INDEX464
W

WAR 110
manifest.mf 111
package structure 110–111

WAR file
custom portal theme

example 313
portal example 306
web service encryption

example 256
web service example

239, 242, 251
WarDeployer 56, 159
war-deployers-jboss-beans.xml

 56
Weather portlet

264, 291–292, 309
web application 110–114

configuration 111–114
structure 110

Web Application Archive,
WEB-INF 111–112

web authentication 140–142
basic 141–143
client certificate 141–142
client certification

authentication 154
digest 141–142, 145–146
form 141–142, 144

web authorization
allRolesMode 147–148, 157
configuration 146–147
roles 157–158

Web Console
directory 423
securing 424

web deployment descriptor
context.xml 112–114,

118, 130
global 114–115
jboss.xml 111
jboss-web.xml 112–114,

123–124, 136
proprietary 111
server.xml 139
standard 111
web.xml 111–112, 114, 120,

136, 146

web encryption
certificatePrincipal 157
client certification

authentication 154
HTTPS 148–150
mutual authentication

152–154
transport guarantees 150–152

web method 237
web security

allRolesMode 140
certificatePrincipal 140
default security domain 159
HTTP connector 149
HTTP method 137–138
HTTPS 142
HTTPS connector 139
login form 141
login-config.xml 136, 159
realm 140, 143, 145–146, 157
roles 137–138, 146–148
security domains 139
server.xml 139, 157
SSL 139
standard configuration

137–139
transport guarantee 137–139
URL patterns 137–138

web service
authorization

configuration 249–252
bottom-up approach 238
terminology 237
top-down approach 238, 241
view in browser 240

Web Services Definition
Language 237

Web Services Description
Language

generated via wsprovide 240
web.xml 50, 246, 356, 359, 424

JspServlet 434
portal theme 313
portlet 276–278, 281
precompile JSPs 435
tuning 401–402
web service authorization 250
web service example 239, 242

web-console.war 424
WEB-INF 111

wiki 264
<blocking-timeout-millis> 399
<window> 285, 305
<window-name> 285
Windows Control Panel 380
Windows service 428
Windows services 382
Windows support tools 97
WireTap class

MDB example 215, 230
no annotations 218

wsconsume 241, 243, 246
example usage 243

WSDL file, automatic
creation 240

WSDL. See Web Services Descrip-
tion Language

wsdlLocation 242
wsprovide 240–241
WSRP Configuration

portlet 270
wsrunclient 241, 252, 258

example usage 243
WS-Security 254

client configuration 256–258
message signing 258

WSSecurityHandler class 258
WSSecurityHandlerClient

class 258
WSSecurityHandlerServer

class 255, 258
wstools 241

X

XA 63
messaging 204

xa-datasource 62
XML. See Extensible Markup

Language

Y

young generation. See heap,
young generation

Z

zip file error 60

	JBoss
	brief contents
	contents
	about the cover illustration
	preface
	acknowledgments
	about this book
	Audience
	Roadmap
	Source code conventions and downloads
	On versions of JBoss middleware
	Author Online
	About the authors
	About the title
	The JBoss Application Server
	Vote for JBoss
	1.1 Introducing JBoss
	1.1.1 What is JBoss?
	1.1.2 Exploring the JEMS lineup
	1.1.3 Why is JBoss AS so popular?

	1.2 Installing JBoss Application Server
	1.2.1 Preparing for the installation
	1.2.2 Installing from the binary distribution
	1.2.3 Using the JEMS Installer

	1.3 Exploring the installation
	1.3.1 The bin directory
	1.3.2 The client directory
	1.3.3 The docs directory
	1.3.4 The lib directory
	1.3.5 The server directory
	1.3.6 Understanding server configurations
	1.3.7 Exploring the configuration structure
	1.3.8 Customizing your configuration

	1.4 Starting and stopping the server
	1.4.1 Starting the server
	1.4.2 Starting an alternative configuration
	1.4.3 Verifying that the server is running
	1.4.4 Stopping the server

	1.5 Deploying to the server
	1.5.1 Creating the application
	1.5.2 Deploying the application
	1.5.3 Undeploying the application

	1.6 Summary
	1.7 References

	Managing the JBoss Application Server
	2.1 Examining the JBoss Application Server architecture
	2.1.1 Understanding the microcontainer
	2.1.2 Understanding JMX

	2.2 Configuring the application server
	2.2.1 Configuring logging
	2.2.2 Configuring directory locations
	2.2.3 Defining system properties

	2.3 Exploring the management tools
	2.3.1 Using the JMX Console
	2.3.2 Using the twiddle utility

	2.4 Examining interesting MBeans
	2.4.1 Viewing system properties
	2.4.2 Viewing the JNDI namespaces
	2.4.3 Changing the logging levels
	2.4.4 Increasing the thread pool size
	2.4.5 Obtaining application server information

	2.5 Summary
	2.6 References

	Deploying applications
	3.1 Understanding deployment
	3.1.1 Deploying an application
	3.1.2 Understanding application packaging
	3.1.3 Understanding application types
	3.1.4 Understanding deployment ordering
	3.1.5 Deployment configuration options

	3.2 Understanding class loading
	3.2.1 Understanding multiple class loaders
	3.2.2 Scoping classes
	3.2.3 Understanding loader repositories

	3.3 Fixing common deployment errors
	3.3.1 Class not found exception
	3.3.2 Duplicate JAR files
	3.3.3 Zip file errors
	3.3.4 Class cast exception

	3.4 Deploying miscellaneous applications
	3.4.1 Deploying data sources
	3.4.2 Deploying a Hibernate archive

	3.5 Summary
	3.6 References

	Securing applications
	4.1 Understanding security
	4.1.1 Understanding application security
	4.1.2 Understanding authentication
	4.1.3 Understanding authorization
	4.1.4 Configuring security
	4.1.5 Dynamic login configuration
	4.1.6 Logging security on the server

	4.2 Using secure communication
	4.2.1 Understanding symmetric and asymmetric encryption
	4.2.2 Understanding certificates and source authentication
	4.2.3 Creating and signing certificates
	4.2.4 Modifying the cacerts file
	4.2.5 Understanding certificate-based client authentication
	4.2.6 Configuring an SSL-aware security domain

	4.3 Configuring login modules
	4.3.1 Using the file-based login module
	4.3.2 Using the database login module
	4.3.3 Using the LDAP login module
	4.3.4 Using the identity login module
	4.3.5 Stacking login modules
	4.3.6 Using the client certificate login module

	4.4 Summary
	4.5 References

	Application services
	Configuring JBoss Web Server
	5.1 Understanding web applications
	5.1.1 Understanding the web application structure
	5.1.2 Understanding web application configuration

	5.2 Configuring JBoss Web Server
	5.2.1 Locating key directories
	5.2.2 Exploring JBoss Web Server Configuration
	5.2.3 Exploring the WAR deployer configuration file

	5.3 Configuring URL paths
	5.3.1 Enabling virtual hosts
	5.3.2 Configuring context paths
	5.3.3 Changing the root context path

	5.4 Configuring connectors
	5.4.1 Understanding connector configuration
	5.4.2 Configuring concurrency
	5.4.3 Configuring timeouts
	5.4.4 Configuring a proxy hostname and port

	5.5 Configuring web class loading
	5.6 Using valves
	5.7 Configuring JavaServer Faces
	5.8 Summary
	5.9 References

	Securing web applications
	6.1 Configuring web security
	6.1.1 Configuring security in web.xml
	6.1.2 Configuring security in jboss-web.xml
	6.1.3 Configuring security in server.xml

	6.2 Authenticating users
	6.2.1 Understanding the web authentication strategies
	6.2.2 Basic authentication
	6.2.3 Form-based authentication
	6.2.4 Digest authentication

	6.3 Authorizing users
	6.3.1 Configuring authorization
	6.3.2 Allowing access to any authenticated user

	6.4 Encrypting web communication
	6.4.1 Enabling HTTPS
	6.4.2 Enabling transport guarantees
	6.4.3 Enabling mutual authentication
	6.4.4 Creating browser certificates

	6.5 Enabling client-certificate authentication
	6.5.1 Enabling protocol-level mutual authentication
	6.5.2 Setting the authentication method
	6.5.3 Specifying the JaasSecurityDomain MBean
	6.5.4 Specifying the security domain
	6.5.5 Pointing to the security domain from the application
	6.5.6 Selecting a strategy for forming the principal from the certificate
	6.5.7 Adding principals and roles to the authorization datastore
	6.5.8 Adding the client’s certificate to the server’s truststore
	6.5.9 Creating a browser certificate

	6.6 Changing the default security domain
	6.7 Summary
	6.8 References

	Configuring enterprise applications
	7.1 Understanding EJBs
	7.1.1 Understanding session beans
	7.1.2 Understanding Hibernate and JPA
	7.1.3 Understanding enterprise packaging

	7.2 Creating an EJB application
	7.2.1 Coding the example application
	7.2.2 Packaging and running the example application

	7.3 Understanding EJB configuration
	7.3.1 Where does everything go?
	7.3.2 Configuring EJB applications
	7.3.3 Configuring the EJB server

	7.4 Configuring session beans
	7.4.1 Changing the JNDI binding
	7.4.2 Looking up a session bean
	7.4.3 Configuring EJB containers

	7.5 Configuring entity persistence
	7.5.1 Injecting Hibernate objects
	7.5.2 Deploying Hibernate mappings

	7.6 Creating JMX service objects
	7.6.1 Creating a service object
	7.6.2 Running the sample application
	7.6.3 Accessing MBeans without injection

	7.7 Configuring the transport protocol
	7.7.1 Understanding transport configuration
	7.7.2 Changing the transport

	7.8 Securing EJBs
	7.8.1 Securing EJBs via annotations
	7.8.2 Securing EJBs via configuration
	7.8.3 Nonintegrated security
	7.8.4 Securing EJB communication

	7.9 Summary
	7.10 References

	JBoss Messaging
	8.1 Understanding messaging systems
	8.1.1 Understanding messaging system architectures
	8.1.2 Understanding the messaging models
	8.1.3 Understanding the JMS API
	8.1.4 Understanding the JBoss Messaging architecture

	8.2 Developing a JMS application
	8.2.1 Coding the example application
	8.2.2 Packaging and running the example application

	8.3 Using message-driven beans
	8.3.1 Creating an MDB
	8.3.2 Packaging an MDB
	8.3.3 Using a descriptor file with an MDB

	8.4 Using message-driven POJOs
	8.4.1 Implementing a message-driven POJO consumer
	8.4.2 Implementing a message-driven POJO producer
	8.4.3 Packaging a message-driven POJO

	8.5 Configuring JBoss Messaging
	8.5.1 Configuring a data source
	8.5.2 Configuring access control
	8.5.3 Configuring destinations
	8.5.4 Updating the application
	8.5.5 Running the modified example
	8.5.6 Updating the MDB
	8.5.7 Configuring secure message transport

	8.6 Summary
	8.7 References

	Configuring Web Services
	9.1 Understanding Web Services
	9.1.1 Understanding web service terminology
	9.1.2 Understanding SOAP binding styles

	9.2 Developing a web service
	9.2.1 Coding the web service
	9.2.2 Packaging the web service
	9.2.3 Manually generating the WSDL
	9.2.4 Developing a web service using the top-down strategy
	9.2.5 Developing the client
	9.2.6 Developing a C# client
	9.2.7 Revisiting the SOAP binding styles

	9.3 Exploring JBossWS annotations
	9.3.1 Understanding the WebContext annotation
	9.3.2 Understanding the EndpointConfig annotation

	9.4 Securing a web service
	9.4.1 Authorizing web service access
	9.4.2 Defining the security realm

	9.5 Encrypting SOAP messages
	9.5.1 Generating the certificate
	9.5.2 Securing the server using WS-Security
	9.5.3 Securing the client using WS-Security
	9.5.4 Signing the messages using WS-Security

	9.6 Summary
	9.7 References

	JBoss Portal
	The JBoss Portal and portlets
	10.1 Introducing the JBoss Portal
	10.1.1 Understanding JSR-168
	10.1.2 Understanding portal terminology
	10.1.3 Installing the JBoss Portal
	10.1.4 Administering the JBoss Portal

	10.2 Creating a portlet
	10.2.1 Coding the Image portlet
	10.2.2 Coding the JSP-related source files
	10.2.3 Understanding the portlet descriptors
	10.2.4 Building and deploying the portlet

	10.3 Creating a portlet instance
	10.3.1 Creating an instance using the portlet-instance.xml file
	10.3.2 Creating an instance using the Admin portlet

	10.4 Declaring a portlet window
	10.4.1 Declaring a portlet window using the *-object.xml file
	10.4.2 Declaring a portlet window using the Admin portlet

	10.5 Summary
	10.6 References

	Configuring the JBoss Portal
	11.1 Configuring window appearance
	11.1.1 Configuring window appearance using *-object.xml

	11.2 Working with multiple windows and instances
	11.2.1 Configuring multiple instances and windows using the descriptor files

	11.3 Working with the CMS portlet
	11.3.1 Gathering example CMS data
	11.3.2 Displaying the new content
	11.3.3 Accessing CMS content

	11.4 Securing the Portal
	11.4.1 Creating a new account
	11.4.2 Managing roles
	11.4.3 Understanding access control

	11.5 Developing a custom portal
	11.5.1 Defining the requirements
	11.5.2 Making the proposal
	11.5.3 Defining the portal
	11.5.4 Customizing the theme
	11.5.5 Customizing CMS content
	11.5.6 Packaging the portal

	11.6 Summary

	Going to production
	Understanding clustering
	12.1 Understanding clustering
	12.1.1 Load balancing
	12.1.2 Cluster topology and makeup
	12.1.3 Automatic discovery and multicasting
	12.1.4 High availability
	12.1.5 Replication and fault tolerance
	12.1.6 State passivation
	12.1.7 Distribution versus clustering

	12.2 Setting up a simple cluster
	12.2.1 Bringing up a JBoss cluster
	12.2.2 Creating a clustered EJB
	12.2.3 Deploying your application
	12.2.4 Calling the clustered EJB

	12.3 Understanding JBoss clustering
	12.3.1 Understanding the JGroups architecture
	12.3.2 Configuring JBoss clustering services
	12.3.3 Configuring the protocol stack

	12.4 Configuring JBoss Cache
	12.4.1 Examining the JBoss Cache configuration files
	12.4.2 Deciding what to cache

	12.5 Summary
	12.6 References

	Clustering JBoss AS services
	13.1 HTTP load balancing
	13.1.1 Load balancing with native web servers
	13.1.2 Load balancing with hardware

	13.2 HTTP session replication
	13.2.1 Configuring replication
	13.2.2 Understanding session usage
	13.2.3 Using field-level replication
	13.2.4 Configuring passivation

	13.3 Clustering session beans
	13.3.1 Load balancing session beans
	13.3.2 Replicating stateful session beans

	13.4 Clustering entities
	13.4.1 Replicating the entity cache

	13.5 Clustering JNDI
	13.5.1 Understanding the HA-JNDI service
	13.5.2 Enabling HA-JNDI
	13.5.3 Accessing HA-JNDI
	13.5.4 Deciding whether to use HA-JNDI

	13.6 Summary
	13.7 References

	Tuning the JBoss Application Server
	14.1 Defining performance
	14.2 Performance tuning methodology
	14.2.1 Holistic performance tuning
	14.2.2 Performance analysis test cycle

	14.3 Tuning the hardware and network
	14.3.1 Setting network card speed
	14.3.2 Choosing the number of CPUs
	14.3.3 Choosing 32-bit or 64-bit

	14.4 Tuning the OS
	14.4.1 Understanding processor affinity

	14.5 Tuning the JVM
	14.5.1 Understanding the Java heap
	14.5.2 Understanding garbage collection
	14.5.3 Gathering garbage collection data
	14.5.4 Choosing heap settings
	14.5.5 Resolving out of memory exceptions
	14.5.6 Exploring more tuning options

	14.6 Tuning JBoss AS
	14.6.1 Configuring data sources
	14.6.2 Configuring the HTTP request thread pool
	14.6.3 Tuning the JSP servlet

	14.7 Tuning your application
	14.7.1 Avoiding System.gc
	14.7.2 Taking a thread dump

	14.8 Summary
	14.9 References

	Going to production
	15.1 Selecting a platform
	15.1.1 Selecting a JVM
	15.1.2 Selecting a JBoss AS version
	15.1.3 Selecting a platform

	15.2 Collocating multiple application server instances
	15.2.1 Preventing file clashes
	15.2.2 Preventing port clashes
	15.2.3 Shutting down multiple nodes

	15.3 Removing unwanted services
	15.4 Securing the server applications
	15.4.1 Removing the server applications
	15.4.2 Adding security to the server applications
	15.4.3 Limiting access to the local machine

	15.5 Changing the default database
	15.5.1 Configuring the EJB3 timer service

	15.6 Starting the application server as a service
	15.6.1 Registering a service in Windows
	15.6.2 Registering multiple services
	15.6.3 Registering a service in Linux

	15.7 Configuring JSP compilation
	15.8 Summary
	15.9 Resources

	appendix A: JNDI namespaces
	A.1 Understanding the enterprise naming context
	A.2 Examining the JNDI namespaces

	appendix B: Change is inevitable
	B.1 Jopr and Embedded Jopr
	B.1.1 Installing and configuring Embedded Jopr
	B.1.2 JBoss Portal 2.7.0
	B.1.3 The common/lib directory
	B.1.4 The web configuration
	B.1.5 The profile service repository
	B.1.6 The jboss.system.log.threshold system property
	B.1.7 References

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	back cover

